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Résumé

Faire l’estimation d’une copule de valeurs extrêmes bivariée revient à estimer A, sa fonction
de Pickands qui lui est associée. Cette fonction A :[0,1] → [0,1] doit satisfaire certaines
contraintes :

max{1 − t, t} ≤ A(t) ≤ 1, t ∈ [0,1]

A est convexe.

Plusieurs estimateurs ont été proposés pour estimer cette fonction A, mais peu respectent
ses contraintes imposées. La contribution principale de ce mémoire est d’introduire une tech-
nique simple de correction d’estimateurs de la fonction de Pickands de sorte à ce que les
estimateurs corrigés respectent les contraintes exigées. La correction proposée utilise une
nouvelle propriété du vecteur aléatoire bivarié à valeurs extrêmes, combinée avec l’enveloppe
convexe de l’estimateur obtenu pour garantir le respect des contraintes de la fonction A.

La seconde contribution de ce mémoire est de présenter un estimateur bayésien non
paramétrique de la fonction de Pickands basé sur la forme introduite par Capéraà et al.
(1997). L’estimateur utilise les processus de Dirichlet pour estimer la fonction de répartition
d’une transformation du vecteur aléatoire bivarié à valeurs extrêmes.

Des analyses par simulations sont produites sur un ensemble d’estimateurs pour mesu-
rer la performance de la correction et de l’estimateur bayésien proposés, sur un ensemble
de 18 distributions de valeurs extrêmes bivariées. La correction améliore l’erreur quadra-
tique moyenne sur l’ensemble des niveaux. L’estimateur bayésien proposé obtient l’erreur
quadratique moyenne minimale pour les estimateurs considérés.

Mots clés : Copules, valeurs extrêmes, fonctions de Pickands, estimation avec
contraintes, estimation bayésienne.
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Abstract

Estimating a bivariate extreme-value copula is equivalent to estimating A, its associated
Pickands function. This function A: [0,1] → [0,1] must satisfy some constraints :

max{1 − t, t} ≤ A(t) ≤ 1, t ∈ [0,1]

A is convex.

Many estimators have been proposed to estimate A, but few satisfy the imposed con-
straints. The main contribution of this thesis is the introduction of a simple correction tech-
nique for Pickands function estimators so that the corrected estimators respect the required
constraints. The proposed correction uses a new property of the extreme-value random vec-
tor and the convex hull of the obtained estimator to guaranty the respect of the Pickands
function constraints.

The second contribution of this thesis is to present a nonparametric bayesian estimator of
the Pickands function based on the form introduced by Capéraà, Fougères and Genest (1997).
The estimator uses Dirichlet processes to estimate the cumulative distribution function of a
transformation of the extreme-value bivariate vector.

Analysis by simulations and a comparison with popular estimators provide a measure of
performance for the proposed correction and bayesian estimator. The analysis is done on 18
bivariate extreme-value distributions. The correction reduces the mean square error on all
distributions. The bayesian estimator has the lowest mean square error of all the considered
estimators.

Keywords: Copula, Extreme Value, Pickands Function, Constraint Estimation,
Bayesian Estimation.

7





Table des matières

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Liste des tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Table des figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Liste des sigles et des abréviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Remerciements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapitre 1. Théorie des valeurs extrêmes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Théorème des valeurs extrêmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapitre 2. Copules de valeurs extrêmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Copules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Théorème de Sklar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Bornes de Fréchet-Hoeffding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Copules de valeurs extrêmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapitre 3. Estimateurs et corrections non paramétriques . . . . . . . . . . . . . . . . 37

Estimateurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Estimateur de Pickands (1981) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Estimateur de Deheuvels (1991) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Estimateur de Capéraà, Fougères et Genest (1997) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Estimateur de Hall-Tajvidi (2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Correction d’estimateurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Plus grand minorant convexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Spline définie dans A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9



Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapitre 4. Correction convexe et estimateur bayésien . . . . . . . . . . . . . . . . . . . 49

Correction par centralisation et enveloppe convexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Propriété de la variable aléatoire Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Enveloppe convexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Correction par centralisation et enveloppe convexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Estimateur bayésien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Contexte bayésien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Processus de Dirichlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Estimateur bayésien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Bibliographie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Annexe 1 : Preuve univariée d’équivalence du max-stable . . . . . . . . . . . . . . . . . . 69

Annexe 2 : Calculs de Capéraà, Fougères et Genest (1997) . . . . . . . . . . . . . . . . . 71

Annexe 3 : Algorithme de l’estimateur bayésien . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

10



Liste des tableaux

4.1 Description des distributions à partir desquelles les échantillons de la simulation
ont étées générées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Description des erreurs quadratiques moyennes des estimateurs et des corrections
appliqués sur les échantillons générés, selon la taille de l’échantillon. . . . . . . . . . . . . 64

11





Table des figures

1.1 Densités de valeurs extrêmes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 Données selon différentes forces de dépendance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Données avec faible dépendance (Copule mixte (θ = 0.1, ϕ = 0)). . . . . . . . . . . . . . . . . 34
2.3 Données avec forte dépendance (Copule logistique (θ = 0.95, ϕ = 0.75, r = 10)).. . 35

3.1 Jeu de données de 30 observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Estimation par l’estimateur de Pickands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Estimation par l’estimateur de Deheuvels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Estimation par l’estimateur de CFG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Estimation par l’estimateur de Hall-Tajvidi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Exemple de correction par le PGMC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Correction d’estimateurs par FGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Estimateur de CFG corrigé. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Fonctions de Pickands a priori.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Estimation par l’estimateur bayésien. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Copules logistiques utilisées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Copules mixtes utilisées. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

13





Liste des sigles et des abréviations

Estimateur de CFG Estimateur de Capéraà, Fougères et Genest (1997).

Correction FGS Correction de Fils-Villetard, Guillou et Segers (2008).

i.i.d. [Variables aléatoires] indépendantes et identiquement distri-
buées.

TVE Théorie des valeurs extrêmes.

MCMC Monte-Carlo par chaînes de Markov.

PGMC Plus grand minorant convexe.

s.à. Sujet à (Contraintes dans le contexte d’optimisation).

15





Remerciements

Mes remerciements les plus sincères sont adressés à mon directeur de recherche, Pr. François
Perron. C’est grâce à son aide, à ses conseils et à son soutien financier que ce mémoire peut
être publié. Je lui suis aussi reconnaissant pour les échanges de fin de rencontre que nous
avons eus et les conseils qu’il m’a partagés pour mes objectifs suivant la publication de ce
mémoire.

Je tiens également à remercier le personnel du département de mathématiques et de
statistique de l’Université de Montréal pour leur disponibilité, pour la qualité de leur ensei-
gnement et pour les ressources nécessaires à la réussite qu’ils ont fournies.

Finalement, je tiens à donner une mention spéciale aux personnes près de moi qui m’ont
supporté au cours des dernières années. Plus précisément, à mon père, Daniel, à ma mère,
Josée, à ma soeur, Jessica, et à ma très chère Marilou.

17





Introduction

Dans la théorie de l’estimation, on peut s’intéresser à l’observation d’un évènement à valeurs
extrêmes. Des exemples de telles études peuvent être : les pertes maximales d’un assureur,
le risque d’une action financière, le nombre maximal de tremblements de terre au cours de
l’année. Pour ce faire, on étudie la fonction de survie P(X > x) du phénomène aléatoire à
l’aide de la théorie des valeurs extrêmes.

D’autres parts, il est possible d’étudier et de modéliser la force du lien de dépendance qui
régit deux ou plusieurs phénomènes aléatoires simultanément. Pour ce faire, une approche est
d’estimer la copule des variables aléatoires liées aux évènements. Le terme copule, apporté par
Sklar en 1959, peut être interprété comme la fonction de dépendance qui lie nos variables
aléatoires ensemble. Cette approche est intéressante puisque selon Ding et Li (2015), la
copule permet de capturer la totalité de la dépendance entre les variables, contrairement au
coefficient de détermination, par exemple.

Sklar (1959) a montré qu’une fonction de répartition conjointe F , d’un vecteur aléatoire
(X,Y ) ∈ X × Y , peut toujours se décomposer dans la forme :

F (x,y) = C(FX(x), FY (y)), (x,y) ∈ X × Y

où FX et FY sont les fonctions de répartition marginales respectives de X et Y , C est la
fonction de dépendance - ou copule.

Le contexte dans lequel baigne les contributions de ce mémoire est celui où l’on s’intéresse
à l’observation de deux événements à valeurs extrêmes simultanément. Autrement dit, on
s’intéresse à la distribution du vecteur aléatoire lié aux deux événements extrêmes, en tenant
compte du lien de dépendance qui les régit. Ce contexte nous permet de réunir la théorie
des valeurs extrêmes en prenant les marges associées à nos événements et de les joindre par
une copule de valeurs extrêmes. Un exemple d’application, présenté dans Tawn (1988), est
l’étude du niveau de la mer maximal de deux ports maritimes britanniques pour évaluer les
risques d’inondation.



Une des particularités des copules de valeurs extrêmes a été montrée par Pickands (1981),
où ce dernier a formulé le théorème portant son nom qui dit que pour la copule de valeurs
extrêmes C, il existe une fonction A telle que

C(u,v) = log(uv)A
( log(u)

log(uv)

)
, u, v ∈ [0,1]

Avec
A(t) ≥ max{1 − t, t}, t ∈ [0,1]

A(0) = A(1) = 1,

A est convexe sur [0,1].

La copule qui lie nos variables aléatoires à valeurs extrêmes peut alors s’exprimer à partir
de la fonction A qui satisfait aux contraintes décrites précédemment. Depuis la publication
de ce théorème en 1981, cette fonction A - de Pickands - est le sujet d’estimation dans le
contexte d’estimation de phénomènes à valeurs extrêmes bivariés.

La difficulté de l’estimation de la fonction de Pickands repose naturellement sur les
contraintes. Plusieurs estimateurs non paramétriques performent bien asymptotiquement,
mais ne respectent pas les contraintes imposées des fonctions de Pickands sur des échantillons
de tailles finies. Plus particulièrement, c’est le cas pour les estimateurs non paramétriques les
plus populaires qui suivent. Le premier fût proposé par Pickands lui-même et porte également
son nom. Ses propriétés asymptotiques, quant à elles, furent montrées par Deheuvels (1984).
Deheuvels proposa aussi, en 1991, une variante de l’estimateur pour corriger le biais lorsque
évalué en 0 et en 1. Quelques années plus tard, Capéraà et al. (1997) proposent un estimateur
performant mieux sur les échantillons de petites tailles. Hall et Tajvidi (2000) proposent à
leur tour un estimateur basé sur les estimateurs précédents, qui a l’avantage de satisfaire la
contrainte de la borne inférieure exigée.

Suivant le non-respect des contraintes imposées, des corrections d’estimateurs ont été
proposées. Selon Fils-Villetard et al. (2008), certaines vont prendre le plus grand minorant
convexe de l’estimateur initial qui respecte les contraintes de A, tandis que d’autres vont
approcher l’estimateur initial par une spline contrainte dans A – l’espace des fonctions de
Pickands.

Notre projet consiste à étudier quelques-unes de ces corrections et à en suggérer une
nouvelle plus simple.
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• Dans le premier chapitre, nous introduisons la théorie des valeurs extrêmes (TVE)
qui est essentielle pour obtenir la forme des distributions de variables aléatoires à
valeurs extrêmes univariées.

• Dans le second, nous introduisons la notion de copule qui complète la construction de
la loi conjointe. Pour le contexte de copules de valeurs extrêmes qui nous intéresse,
il est question d’avoir une copule qui lie deux distributions univariées de valeurs
extrêmes, d’où l’importance du chapitre 1. Nous voyons que cette copule s’exprime
à partir d’une fonction de Pickands, qui est le sujet de notre estimation. Nous y
présentons ses caractéristiques.

• Dans le troisième chapitre, nous introduisons brièvement quelques estimateurs non
paramétriques et type de corrections les plus populaires, en plus d’en justifier
quelques-uns.

• Dans le quatrième chapitre, nous présentons une nouvelle correction d’estimateurs
et un nouvel estimateur bayésien, accompagnés de simulations pour mesurer leur
performance comparativement aux estimateurs traditionnels.
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Chapitre 1

Théorie des valeurs extrêmes

Ce premier chapitre présente la TVE univariée et sa structure suit celle présentée dans le
livre de de Haan et Ferreira (2006). Il est construit en vue de donner au lecteur les notions
de base de la TVE univariée, en mettant l’emphase sur les concepts analogues à ceux qui se
trouvent dans la théorie des copules de valeurs extrêmes bivariées – la généralisation bivariée
de la TVE.

Le théorème des valeurs extrêmes – qui est le résultat principal de la TVE univariée –
peut être présenté en parallèle au théorème central limite, comme le font Kreinovich et al.
(2017). Malgré le contraste qu’un s’intéresse à la moyenne partielle d’un ensemble de va-
riables aléatoires tandis que l’autre s’intéresse au maximum partiel, les deux statistiques
convergent en probabilité et peuvent avoir une distribution limite, sous certaines conditions
et après normalisation. La différence majeure entre les théorèmes est lorsqu’une loi asympto-
tique existe pour le maximum normalisé, elle prend la forme de l’une des lois de probabilité
suivantes : Weibull, Gumbell ou Fréchet.

Théorème des valeurs extrêmes

Soit X1, X2, . . . , Xn, des variables aléatoires i.i.d., on définit

Mn = max(X1, X2, . . . , Xn).

La distribution de Mn est le point focal du chapitre.

Dans l’exemple de de Haan et Ferreira (2006) du niveau de la mer lors de tempêtes
à Delfzijl, aux Pays-Bas, on s’intéresse à ériger une digue de manière à ce qu’il y ait une
probabilité d’inondation inférieure à 10−4 au cours d’une année. Des données récoltées lors de
1877 tempêtes au cours des 100 dernières années forment un jeu de données d’observations
approximativement indépendantes. On cherche à calculer la hauteur m que doit avoir la



digue pour que
P(Mn > m) ≤ 10−4,

où Mn est la variable aléatoire de la hauteur maximale du niveau de la mer atteinte lors
d’une année.

Asymptotiquement, le problème d’identification de la distribution de Mn n’est pas très
intéressant. En effet, on remarque que pour X1, X2, . . ., Xn, des variables aléatoires indé-
pendantes et de fonction de répartition F , on a

Mn
P−→

n→∞
x∗,

où x∗ est le suprémum essentiel. En effet,

P(Mn ≤ x) = F n(x)

qui converge à 1 si x ≥ x∗ et à 0 si x < x∗, lorsque n tend vers l’infini.

On s’intéresse alors à la distribution asymptotique de Mn.

Définition 1.0.1. On dit que la fonction de répartition F appartient au domaine d’attraction
de G, noté F ∈ D(G), s’il existe deux suites (an)n∈N > 0 et (bn)n∈N telles que

lim
n→∞

F n(xan + bn) = G(x),

où G est une fonction de répartition non dégénérée. De plus, si G existe, sa loi est appelée
une loi de valeurs extrêmes.

Nous cherchons alors, si elles existent, des suites de valeurs (an)n∈N > 0 et (bn)n∈N, telles
que

Mn − bn

an

L−→
n→∞

G,

avec G une fonction de répartition non dégénérée.

Autrement dit, on cherche (an)n∈N > 0 et (bn)n∈N, telles que F ∈ D(G).

Définition 1.0.2. Soit la fonction de répartition G de X1, X2, . . ., Xn i.i.d.. On définit G
comme étant max-stable s’il existe des suites (an)n∈N > 0 et (bn)n∈N telles que

Gn(anx + bn) = G(x),

pour tout n > 0. Une définition alternative et équivalente est de dire que

P
(

Mn − bn

an

≤ x
)

= P(X1 ≤ x),

pour tout n > 0.
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Par définition, la loi de G qui est max-stable est une loi de valeurs extrêmes. Le théorème
suivant énonce la réciproque de cette remarque.

Théorème 1.0.3. Soit F une fonction de répartition telle que F ∈ D(G), alors G est
max-stable si et seulement si la loi de G est une loi de valeurs extrêmes.

Démonstration. Voir Annexe 1. □

Les dernières définitions sont donc équivalentes. Elles mènent au théorème suivant qui
est le résultat principal de cette section. Il agit comme analogue au théorème principal du cas
bivarié.

Théorème 1.0.4 (Fisher et Tippet (1928), von Mises (1936), Gnedenko (1943)). La fonction
de répartition d’une loi de valeurs extrêmes est donnée par

Gγ

(
x − µ

σ

)
,

avec µ la moyenne et σ l’écart-type de la loi de valeurs extrêmes, et

Gγ(x) =


exp

(
− (1 + γx)−1/γ

)
si γ ̸= 0, 1 + γx > 0

exp(−e−x) si γ = 0.

L’indice γ est appelé l’indice de valeurs extrêmes.

Démonstration. Le lecteur s’intéressant à la démonstration du théorème est référé à
de Haan et Ferreira (2006). □

L’intérêt de ce théorème est de dire que la classe de toutes les distributions de valeurs extrêmes
se caractérise en fonction d’un seul paramètre, en excluant les paramètres de centralisation et
de normalisation. Le problème d’identification de la distribution asymptotique de Mn devient
alors un problème d’estimation de γ. Pour faire l’analogie, le résultat bivarié indique qu’une
copule de valeurs extrêmes s’écrit à l’aide d’une fonction, que nous chercherons à estimer.

Le paramètre γ de la distribution de valeurs extrêmes permet de contrôler les queues de
la distribution. En effet,

• si γ < 0, la fonction de répartition Gγ appartient à la loi de Weibull. Cette
distribution est à queue courte.
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Figure 1.1. Densités de valeurs extrêmes.

• si γ = 0, la fonction de répartition Gγ appartient à la loi de Gumbel. Cette
distribution est à queue légère et tous ses moments existent.

• si γ > 0, la fonction de répartition Gγ appartient à la loi de Fréchet. Cette distribution
est à queue droite épaisse.

Un exemple visuel pour chacune de ces distributions est illustré dans la figure 1.1. Les
densités des distributions sont paramétrisées par µ = 0 et σ = 1. Les valeurs de γ pour les
lois de Gumbel, de Fréchet et de Weibull sont respectivement de 0, de 0,8 et de -0,8.

26



Chapitre 2

Copules de valeurs extrêmes

"La pertinence des copules vient de leur rôle dans la modélisation de la structure de dépen-
dance d’une distribution multivariée, sans tenir compte des marges" - Fils-Villetard et al.
(2008)

Copules
La structure de cette section est basée sur le chapitre 2 du livre de Nelsen (2006) et le

lecteur est encouragé à consulter l’ouvrage pour une introduction plus approfondie à la théorie
des copules.

Le but de ce chapitre est de donner au lecteur un outil lui permettant d’étudier la struc-
ture de dépendance qui régit deux variables aléatoires. Un exemple pourrait être d’analyser
la dépendance entre les notes d’un étudiant dans son cours de calcul intégral et ses notes
dans son cours d’algèbre linéaire. Le résultat de l’analyse pourrait nous informer à savoir
si l’étudiant sacrifie du temps d’étude d’un cours au détriment de l’autre, ou au contraire,
s’il essaie d’uniformément répartir son temps d’étude entre les cours. Cet outil qui lie – ou
accouple – deux variables aléatoires par un lien de dépendance est la copule.

Au cours du chapitre, il est question de représenter une fonction de répartition conjointe
de deux événements aléatoires comme une fonction de ses marges. Cette fonction des marges
est une copule bivariée associée aux deux événements aléatoires. La copule doit donc satisfaire
aux conditions des fonctions de répartitions bivariées.

Ainsi, il pourrait intéresser le lecteur de rappeler certaines propriétés élémentaires des
fonctions de répartition bivariées avant de présenter formellement les copules bivariées et
leur usage en théorie des probabilités.



Pour le restant du chapitre, définissons F la fonction de répartition du vecteur aléatoire
(X,Y) à valeurs dans X × Y, FX et FY les fonctions de répartition marginales respectives.

On a

• F : X × Y → [0,1]

• X et Y sont indépendantes ⇔ F(x, y) = FX(x)FY (y), (x,y) ∈ X × Y

• FX(x) = lim
b→∞

F (x, b), x ∈ X .

Définition 2.0.1. On définit la copule, C, comme une fonction

C : [0,1]2 → [0,1],

telle que :

(1) Pour u ∈ [0,1],
C(u,0) = C(0,u) = 0,

et
C(u, 1) = C(1, u) = u.

(2) ∀ u1, u2, v1, v2 ∈ [0,1] avec u1 ≤ u2, v1 ≤ v2,

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v2) ≥ 0.

Note : La deuxième propriété énumérée définit une fonction 2-croissante.

Théorème de Sklar

Le théorème suivant permet le lien entre la définition des copules présentée et l’usage
probabiliste qu’il en est fait. Comme le précise Ding et Li (2015), le théorème de Sklar
décompose la fonction de répartition conjointe en deux composantes : la copule et les marges
uniformes des variables.

Théorème 2.0.2 (Sklar (1959)). Soit F une fonction de répartition conjointe avec FX , FY

comme fonctions de répartition marginales.

Il existe une copule C telle que

F (x,y) = C(FX(x), FY (y)), (x, y) ∈ X × Y
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De plus, si FX et FY sont continues, alors C est unique ; autrement l’unicité de C se réalise
sur l’image de FX et FY . Le résultat mentionne également que si FX et FY sont des fonctions
de répartition marginales, alors F telle que définie est une fonction de répartition conjointe
de marges FX et FY .

La force d’une copule est donc de prendre deux fonctions de répartition marginales et d’en
créer une conjointe avec un lien de dépendance entre les variables. Le but de ce mémoire, on
le rappelle, est d’estimer des copules de valeurs extrêmes.

Avant de voir les implications de ce théorème, il pourrait intéresser le lecteur de se fami-
liariser davantage avec ce dernier à l’aide d’un exemple. Ci-dessous est présenté des données
simulées selon différentes copules. La pertinence de cet exemple visuel se trouve dans le fait
que les distributions marginales de X et de Y sont identiques entre elles, mais aussi au tra-
vers des graphiques. L’exemple illustre pleinement la force des copules à altérer la dépendance
entre les variables aléatoires.

Figure 2.1. Données selon différentes forces de dépendance.

L’exemple ci-haut représente des données à valeurs extrêmes simulées de distributions
marginales exponentielles. Le graphique est exprimé en fonction du vecteur de quantiles
(FX(xi), FY (yi)) des observations (xi, yi) et les copules utilisées sont respectivement de type
et de paramètres : mixte (θ = 0.1, ϕ = 0), logistique (θ = 0.9, ϕ = 0.5, r = 2), logistique
(θ = 0.95, ϕ = 0.75, r = 10). Ces copules de valeurs extrêmes sont explorées plus en détails
dans la seconde section du chapitre, mais l’exemple illustre parfaitement la pertinence des
copules.
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Avant de présenter les copules de valeurs extrêmes, quelques propriétés, à être présentées,
seront utiles dans la seconde section de ce chapitre.

D’abord, un corollaire direct du théorème de Sklar permettant de construire des copules. Il
suffit de définir l’inverse généralisé, F (−1) : [0,1) → [−∞, ∞] , d’une fonction de répartition
F comme étant

F (−1)(u) = inf{x : F (x) ≥ u}, u ∈ [0,1).

On obtient alors :

Corollaire 2.0.3. Soit F, FX , FY , C comme dans le théorème de Sklar, F
(−1)
X , F

(−1)
Y les

inverses généralisés de FX et de FY , alors

C(u,v) = F
(

F
(−1)
X (u), F

(−1)
Y (v)

)
, (u,v) ∈ [0,1)2

Si FX et FY sont continues, avec la connaissance des fonctions de répartition marginales et
conjointes, il est possible de construire des copules bivariées.

Sans avoir d’impact direct sur le restant du chapitre, ce corollaire peut servir d’outil de
compréhension et d’analyse intéressant au lecteur ; il peut servir pour explorer et analyser
théoriquement différents types et niveaux de dépendance. Toutefois, pour revenir à la défi-
nition 2.0.1 des copules, dans le cas où FX et FY sont continues, la condition 1 reflète le
principe qu’une fonction de répartition suit une distribution uniforme sur l’intervalle [0,1] ;

C(u, 1) = F (F (−1)
X (u), F

(−1)
Y (1))

= FX|Y (F (−1)
X (u)|F (−1)

Y (1))FY (F (−1)
Y (1))

= FX(F (−1)
X (u)) = u.

De même,

C(u, 0) = F (F (−1)
X (u), F

(−1)
Y (0))

= FY |X(F (−1)
Y (0)|F (−1)

X (u))FX(F (−1)
X (u)) = 0.

La condition 2 découle du fait que la fonction de répartition doit être une fonction 2-
croissante, pour ne pas permettre de probabilités négatives.

Un cas particulier des copules est celui où les variables aléatoires étudiées sont indépen-
dantes. On rappellera que dans cette situation,

F (x,y) = FY (x)FY (y), (x,y) ∈ (X ,Y).
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Dans le contexte des copules, ceci implique

C(u,v) = C(FX(x), FY (y)) = F (x,y) = FX(x)FY (y) = uv.

Cette remarque sera utilisée dans le contexte des copules de valeurs extrêmes.

Un aspect fort intéressant des copules est celui de leur invariance aux transformations
strictement croissantes sur le domaine des variables X et Y. Autrement dit, pour des trans-
formations qui n’affectent pas l’ordonnancement des valeurs de X et de Y, la copule des
variables transformées est identique à celle originale.

Bornes de Fréchet-Hoeffding

Les dernières propriétés pertinentes pour notre problème sont les bornes de la copule. En
1951 pour Fréchet et simultanément pour Hoeffding dans des journaux allemands, les auteurs
ont distinctement publié le résultat suivant.

Théorème 2.0.4 (Bornes de Fréchet-Hoeffding). Soit la copule C. On a

max(u + v − 1, 0) ≤ C(u,v) ≤ min(u,v), u,v ∈ [0,1]

En plus de borner explicitement la fonction copule, les bornes de Fréchet-Hoeffding sont d’in-
térêt pour leur analogue à valeurs extrêmes qui seront présentés au cours des pages suivantes.
Elles serviront de points de repère pour l’interprétation de la fonction de Pickands estimée.

Copules de valeurs extrêmes

Suivant les sujets des premiers chapitres, les copules de valeurs extrêmes se présentent
naturellement. D’abord, lorsqu’il est question de valeurs extrêmes, un sens d’ordonnancement
est requis. Dans le contexte actuel, nous définissons l’ordonnancement des données Zi par
composante. C’est-à-dire :

max
1≤i≤n

Zi = ( max
1≤i≤n

Xi, max
1≤i≤n

Yi).

Comme le précise Tawn (1988), la difficulté de cette statistique est qu’elle peut être impossible
à observer sous la forme d’une donnée.

Définition 2.0.5. Une copule C est définie max-stable si

C(u,v) = Cr(u1/r, v1/r), u,v ∈ [0,1],
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pour tout r > 0.

La pertinence de cette définition se trouve dans la définition suivante :

Définition 2.0.6. Une copule C est dite copule de valeurs extrêmes, s’il existe une copule
C∗ telle que

C(u,v) = lim
n→∞

C∗n(u1/n, v1/n), u,v ∈ [0,1].

En effet, les définitions précédentes se rejoignent par le théorème suivant :

Théorème 2.0.7. Une copule est max-stable si et seulement si elle est une copule de valeurs
extrêmes.

Démonstration. Par définition, une copule max-stable est une copule de valeurs extrêmes.
Si C est une copule de valeurs extrêmes, alors il existe C∗ telle que

Cr(u1/r, v1/r) = lim
n→∞

C∗rn(u1/rn, v1/rn) = C(u,v), u,v ∈ [0,1]

pour tout r>0. □

Suite à quoi, le résultat principal de cette section est présenté : le théorème de Pickands.

Théorème 2.0.8 (Pickands (1981)). Soit C, une copule max-stable. Soit X et Y des variables
aléatoires et distribuées selon la copule C, alors on a

C(u,v) = exp
{

log(uv)A
 log(u)

log(uv)

}
, u,v ∈ [0,1],

où A est la fonction de dépendance de la copule de valeurs extrêmes C - aussi appelée fonction
de Pickands. Pour que le résultat soit valide, A doit respecter les conditions suivantes :

max{1 − t, t} ≤ A(t) ≤ 1, t ∈ [0,1],

A est convexe.

Démonstration. La démonstration vient de Nelsen (2006).

Comme C est max-stable et X,Y sont des variables exponentielles de copule de sur-
vie C, les fonctions de survies marginales sont F̄X(x) = e−x, F̄Y (y) = e−y, x, y ≥
0.
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La distribution de survie conjointe est alors

F̄ (x, y) = P(X > x, Y > y) = C(e−x, e−y).

Comme C est max-stable, on a

F̄ (rx, ry) = Cr(e−x, e−y) = F̄ r(x, y).

En choisissant A : [0,1] → [0,1] telle que

A(t) = − log C(e−(1−t), e−t)

qui implique C(e−(1−t), e−t) = exp{−A(t)}.

En posant (x,y) = (r(1 − t), rt) avec t ∈ [0,1], r > 0, on a

F̄ (x,y) = F̄ (r(1 − t), rt) = F̄ r((1 − t), t)

= Cr(e−(1−t), e−t) = exp{−rA(t)}

= exp{−(x + y)A(y/(x + y))}

En remarquant C(u,v) = F̄ (− log(u), − log(v)), on obtient finalement

C(u,v) = exp{log(uv)A(log(u)/ log(uv))}.

Pour que le côté droit soit une copule, il est impératif d’avoir

A(0) = A(1) = 1, max{1 − t, t} ≤ A(t) ≤ 1

et A est convexe.
□

Le problème d’identification de la copule C est alors équivalent au problème d’identifica-
tion de la fonction A. Les estimateurs couverts dans le chapitre suivant sont conçus pour
estimer A. Il est également pertinent de remarquer que la fonction A est définie sur le do-
maine unidimensionnel [0,1]. La variable aléatoire log(U)/ log(UV ) est notée par Z.

Une remarque intéressante est que les bornes de Fréchet-Hoeffding pour C se traduisent,
pour A, par max{1 − t, t} ≤ A(t) ≤ 1. Pour le cas d’indépendance entre U et V,

A(z) = log(C(u, v))/ log(uv) = log(uv)/ log(uv) = 1, (u, v) ∈ [0,1]2.

Pour le cas de dépendance parfaite, A(t) = max[t, 1-t], t ∈ [0,1]. Les bornes des fonctions de
Pickands servent alors de points de référence pour évaluer la dépendance entre les variables.
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Plusieurs mesures de dépendance s’y basent telles que la norme infinie ||1–A(t)||∞, la norme
euclidienne ||1–A(t)||2, la norme absolue ||1–A(t)||1.

Par Tawn (1988), les exemples les plus courants de copules de valeurs extrêmes sont :

(1) Logistique : A(t) = (θr(1 − t)r + θrtr)1/r + (θ − ϕ)t + 1 − θ,
avec 0 ≤ θ, ϕ ≤ 1, r ≥ 1.

(2) Mixte : A(t) = ϕt3 + θt2 − (θ + ϕ)t + 1,
avec 0 ≤ θ, θ + ϕ ≤ 1, θ + 2ϕ ≤ 1, θ + 3ϕ ≥ 0

Note : le modèle logistique est symétrique pour θ = ϕ = 1 et celui mixte l’est pour ϕ = 0.

L’exemple présenté plus tôt dans le chapitre est repris pour illustrer les fonctions de
Pickands. Dans la Figure 2.2 ci-dessous, le graphique de gauche présente les données simulées
suivant la fonction de Pickands illustrée dans le graphique de droite. Telle que présentée plus
haut, la borne supérieure de la fonction A représente l’indépendance des variables X et Y. La
fonction de Pickands longeant cette borne indique un niveau de dépendance plus faible que
celui présenté dans l’exemple de la Figure 2.3.

Figure 2.2. Données avec faible dépendance (Copule mixte (θ = 0.1, ϕ = 0)).

Dans ce second exemple de fonction de Pickands (Figure 2.3), le graphique de droite pré-
sente une fonction de Pickands longeant la borne inférieure suggérant une forte dépendance
entre les variables X et Y. Cette dépendance est observée dans le graphique de gauche de la
Figure 2.3.
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Figure 2.3. Données avec forte dépendance (Copule logistique (θ = 0.95, ϕ = 0.75, r = 10)).

Comme le fait remarquer Ahmadabadi et Ucer (2017), les copules de valeurs extrêmes
permettent une modélisation de la dépendance entre des variables associées positivement.
Cette remarque est causée par la nature de Mn, qui considère uniquement les maximums par
composantes.

Une seconde remarque intéressante porte sur les résultats suivants présentés dans Capéraà
et al. (1997) : deux des mesures d’association populaires, le coefficient de Kendall et de
Spearman, peuvent respectivement être exprimées en fonction de la fonction de Pickands des
variables :

τ =
∫ 1

0

t(1 − t)
A(t) dA′(t), ρ = 12

∫ 1

0
(A(t) + 1)−2dt − 3.
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Chapitre 3

Estimateurs et corrections non paramétriques

Dans ce chapitre, quelques méthodes d’estimation non paramétriques les plus courantes de
la fonction de Pickands sont présentées et quelques-unes sont davantage expliquées. Comme
le rapporte Tawn (1988), le choix non paramétrique est favorisé pour éviter les risques de
modélisation apportés par les approches paramétriques.

Les estimateurs et corrections présentés sont évalués sur un jeu de données de 30 ob-
servations. Ces observations, présentées dans la Figure 3.1, ont été générées à partir d’une
copule logistique(r = 1.5, θ = 1, ϕ = 1) qui donne une fonction de Pickands symétrique.

Figure 3.1. Jeu de données de 30 observations.



Estimateurs

Estimateur de Pickands (1981)

Le premier estimateur de la fonction de Pickands est celui portant le même nom. L’esti-
mateur de Pickands, introduit en même temps que la fonction de Pickands, a vu ses propriétés
asymptotiques être démontrées trois ans plus tard par Deheuvels (1984).

L’estimateur de Pickands AP
n est donné par :

1
AP

n (t) = 1
n

n∑
i=1

ξ̂i(t), t ∈ [0,1].

Les réalisations sont
ξ̂i(t) = min

{−log(ui)
t

,
−log(vi)

1 − t

}
,

où ui = FX(xi) et vi = FY (yi), i ∈ {1, . . . , n}, avec (xi,yi) les observations associées au
vecteur aléatoire (X,Y) de marges FX et FY .

Comme le présente Ahmadabadi et Ucer (2017), l’obtention de cet estimateur est justifiée
comme suit. On pose

P(U ≤ u, V ≤ v) = C(u,v) = exp
(

log(uv)A
( log(u)

log(uv)

))
S = − log(U)

T = − log(V ),

ξ(t) = min
(

S

t
,

T

1 − t

)
, t ∈ [0,1],

où (U,V) est distribué selon la copule C, S et T suivent une distribution exponentielle de
paramètre 1.

On obtient alors

P(ξ(t) > x) = P(U < e−tx, V < e−(1−t)x) = C(e−tx, e−(1−t)x) = e−xA(t).

Ainsi la distribution de ξ(t) est une Exponentielle(A(t)) et que E(ξ(t)) = 1/A(t), d’où l’es-
timation par moyenne empirique des ξ̂i(t).

Gudendorf et Segers (2009) font remarquer que malgré l’inconvénient majeur de ne pas
respecter les critères de bornes et de convexité des fonctions de Pickands, cet estimateur est
encore considéré lorsqu’il est question de comparer de nouveaux estimateurs de la fonction
de Pickands. Une des principales raisons vient de ses propriétés asymptotiques.
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La Figure 3.2 présente l’estimateur de Pickands évalué sur les données précédemment gé-
nérées. Comme le graphique l’illustre, l’estimateur de Pickands ne respecte pas les contraintes
de bornes et de convexité imposées par la fonction de Pickands.

Figure 3.2. Estimation par l’estimateur de Pickands.

Estimateur de Deheuvels (1991)

Pour corriger le biais de la fonction évaluée aux extremités de l’intervalle [0,1], Deheuvels
(1991) propose l’estimateur alternatif AD

n suivant :

1
AD

n (t) = 1
n

n∑
i=1

ξ̂i(t) − t

n

n∑
i=1

ξ̂i(1) − 1 − t

n

n∑
i=1

ξ̂i(0) + 1, t ∈ [0,1],

avec ξ̂i(t) défini comme pour l’estimateur précédent. Comme le précise Hall et Tajvidi (2000),
malgré cet ajustement apporté à l’estimateur de Pickands, l’estimateur de Deheuvels ne ga-
rantit pas la convexité et peut, de même que pour son enveloppe convexe, se trouver hors des
bornes exigées des fonctions de Pickands.

La Figure 3.3 présente l’estimateur de Deheuvels évalué sur les données générées plus
tôt. L’estimateur de Pickands est illustré à titre comparatif. Sans respecter les contraintes de
bornes et de convexité, l’estimateur corrige le biais de l’estimateur de Pickands évalué aux
extrémités.
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Figure 3.3. Estimation par l’estimateur de Deheuvels.

Estimateur de Capéraà, Fougères et Genest (1997)

L’estimateur présenté ici a été publié en promouvant sa capacité d’estimation pour des
échantillons de petites tailles, comparativement à celles des estimateurs présentés jusqu’à
maintenant. Dans l’article de Capéraà et al. (1997), les auteurs comparent la performance
de leur estimateur avec celle des estimateurs précédents en se basant sur des simulations
numériques de tailles d’échantillon n = 100.

L’estimateur de CFG, ACF G
n , est défini comme suit. Soit

Qi =


i∏

k=1
z(k)/(1 − z(k)))


1/n

,

zi = log(ui)/log(uivi) et z(k) = ke statistique d’ordre des zi.

On définit alors

ACF G
n (t) =


(1 − t)Q1−p(t)

n Si 0 ≤ t ≤ z(1),

ti/n(1 − t)1−i/nQ1−p(t)
n Q−1

i si z(i) ≤ t ≤ z(i+1),

tQ−p(t)
n si z(n) ≤ t ≤ 1.

Les zi sont distincts et 0 ≤ p(t) ≤ 1. Les auteurs suggèrent p(t) = 1-t.

40



La justification de l’estimateur est la suivante. Pour Z = log(U)/log(UV ) avec (U,V)
distribué selon la copule C, de fonction de Pickands A, on cherche à calculer

H(z) = P(Z ≤ z).

Ceci est obtenu en calculant P(U ≤ u, Z ≤ z) = P(U ≤ u, V ≤ U
1−z

z ).

Pour ce faire, il faut d’abord savoir :

∂

∂u
F (u, v) = ∂

∂u
exp

{
log(uv)A

(
log(u)
log(uv)

)}

= exp
{

log(uv)A
(

log(u)
log(uv)

)}[
v

uv
A

(
log(u)
log(uv)

)
+

log(uv)A′
(

log(u)
log(uv)

)
log(uv) − log(u)

ulog2(uv)

]

= exp
{

log(uv)A
(

log(u)
log(uv)

)} 1
u

[
A

(
log(u)
log(uv)

)
+ A′

(
log(u)
log(uv)

)
log(uv) − log(u)

log(uv)

]

= exp
{

log(uv)A
(

log(u)
log(uv)

)} 1
u

[
A

(
log(u)
log(uv)

)
+ A′

(
log(u)
log(uv)

)(
1 − log(u)

log(uv)

)]
.

On peut ainsi calculer

P(U ≤ u, Z ≤ z) = P(U ≤ u, V ≤ U
1−z

z ) =
∫ u

0

∫ t1/z−1

0

∂

∂u

∂

∂v
F (t, s)dsdt

=
∫ u

0

∂

∂u
F (t, t1/z−1)dt

=
∫ u

0

1
t
exp

{
log(t1/z)A

(
log(t)

log(t1/z)

)}[
A

(
log(t)

log(t1/z)

)
+

A′
(

log(t)
log(t1/z)

)(
1 − log(t)

log(t1/z)

)]
dt

=
∫ u

0

1
t
exp

{
log(t1/z)A(z)

}[
A(z) + A′(z)(1 − z)

]
dt

=
∫ u

0
tA(z)/z−1dt

[
A(z) + A′(z)(1 − z)

]
= uA(z)/z z

A(z)

[
A(z) + A′(z)(1 − z)

]

= uA(z)/z
[
z + A′(z)

A(z) (1 − z)z
]

Ce qui donne H(z) = P(U ≤ 1, Z ≤ z) = z + A′(z)
A(z) (1 − z)z.

En résolvant le système d’équations différentielles pour A, on obtient
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H(z) − z

z(1 − z) = A′(z)
A(z) ⇔ A(z)H(z) − z

z(1 − z) = A′(z)

⇒ A(z) = exp

{ ∫ z

0

H(u) − u

u(1 − u) du + C

}

⇒ A(t)
A(s) = exp

{ ∫ t

s

H(u) − u

u(1 − u) du

}

⇒ A(t) = exp

{ ∫ t

0

H(u) − u

u(1 − u) du

}
,

puisque A(0) = 1, par définition de la fonction de Pickands. De même, on peut obtenir

A(t) = exp

{
−

∫ 1

t

H(u) − u

u(1 − u) du

}
.

L’estimateur présenté se base sur ces formes de A. En effet, les auteurs proposent alors deux
estimateurs non paramétriques :

A0
n(t) = exp

{ ∫ t

0

Hn(u) − u

u(1 − u) du

}
et A1

n(t) = exp

{
−

∫ 1

t

Hn(u) − u

u(1 − u) du

}
,

où Hn est la fonction de répartition empirique des zi.

L’estimateur de CFG combine ces deux estimateurs de sorte que

log ACF G
n (t) = p(t) log A0

n(t) + (1 − p(t)) log A1
n(t).

Des calculs, présentés dans l’annexe 2, prouvent l’équivalence de cette forme de l’estimateur
avec celle présentée plus tôt.

Il a été mentionné que rien ne garantit le respect des bornes pour ACF G
n . En fait, l’esti-

mateur ne les respecte pas presque sûrement.

Soit n la taille de l’échantillon, t ∈ [0,z(1)] et t′ ∈ [z(n),1] où z(i) est la ie statistique d’ordre
des zj, j ∈ {1, 2, . . . , n}, on a

ACF G
n (t) = (1 − t)Q1−p(t)

n < 1 − t

⇔ Q1−p(t)
n < 1 ⇔

n∏
k=1

z(k)

1 − z(k)
< 1
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et

ACF G
n (t′) = t′Q−p(t)

n < t′

⇔ Qn > 1 ⇔
n∏

k=1

z(k)

1 − z(k)
> 1.

Comme P
( ∏n

k=1
z(k)

1−z(k)
= 1

)
= 0 pour des zj indépendants, l’estimateur de CFG ne respecte

pas les bornes, presque sûrement.

L’estimateur de CFG a la propriété d’être consistant et asymptotiquement normal. Par
simulations, Gudendorf et Segers (2009) indiquent que cet estimateur est plus performant
que ceux de Pickands, de Deheuvels et de Hall-Tajvidi.

De plus, par Segers (2004), l’estimateur de CFG s’écrit dans une expression simple qui fait
intervenir la forme des estimateurs précédents. On a

log(ACF G
n (t)) = − 1

n

n∑
i=1

log(ξ̂i(t)) + p(t)
n

n∑
i=1

ξ̂i(0) + 1 − p(t)
n

n∑
i=1

ξ̂i(1).

Ou encore, puisque la constante d’Euler γ = 0.577.. = −E(log(X)), avec X une variable
aléatoire exponentielle de paramètre 1 et ξ(t) est de loi exponentielle de paramètre A(t), une
approximation de l’estimateur de CFG devient

log(ACF G
n (t)) = −1

n

n∑
i=1

log(ξ̂i(t)) − γ, t ∈ [0,1].

La Figure 3.4 présente l’estimateur de CFG évalué sur les données générées plus tôt.
Les estimateurs précédents sont illustrés à titre comparatif. L’estimateur ne respecte pas les
contraintes de bornes et de convexité imposées, mais performe mieux pour des échantillons de
petites tailles que les précédents, selon Capéraà et al. (1997) et Gudendorf et Segers (2009).

Estimateur de Hall-Tajvidi (2000)

L’estimateur de Hall et Tajvidi (2000) est le seul, parmi ceux présentés jusqu’à mainte-
nant, à respecter la contrainte de borne inférieure de la fonction de Pickands.

Il est défini comme suit. Soit
ξ̄i(t) = min

{
ri

t
,

si

1 − t

}
,

43



Figure 3.4. Estimation par l’estimateur de CFG.

où
ri = log(ui)

1
n

∑n
i=1 log(ui)

et si = log(vi)
1
n

∑n
i=1 log(vi)

,

l’estimateur de Hall-Tajvidi AHT
n est donné par

1
AHT

n (t) = 1
n

n∑
i=1

ξ̄i(t), t ∈ [0,1].

Une remarque intéressante par Hall et Tajvidi (2000) est la distinction entre leur estimateur
et celui de Deheuvels : «Les deux étant des modifications de l’estimateur de Pickands, l’es-
timateur de Deheuvels propose un ajustement additif pour le biais tandis que celui présenté
à l’instant propose un ajustement multiplicatif qui a pour effet de normaliser les moments
marginaux à la forme adéquate».

Gudendorf et Segers (2009) précisent que parmi les estimateurs de Pickands, de Deheuvels
et de Hall-Tajvidi, celui de Hall-Tajvidi a la plus petite variance asymptotique.

La Figure 3.5 présente l’estimateur de Hall-Tajvidi évalué sur les données générées plus
tôt. Les estimateurs précédents sont illustrés à titre comparatif. L’estimateur de Hall-Tajvidi
est le seul à respecter les contraintes de bornes imposées, sans toutefois respecter celle de
convexité.
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Figure 3.5. Estimation par l’estimateur de Hall-Tajvidi.

Correction d’estimateurs
Dans la seconde partie de ce chapitre, on présente des corrections d’estimateurs de la

fonction de Pickands. C’est-à-dire des techniques à être appliquées sur un estimateur pour
lui permettre de respecter les contraintes de la fonction de Pickands.

Selon Fils-Villetard et al. (2008), deux principales approches sont généralement emprun-
tées. La plus évidente est de forcer l’estimateur à demeurer à l’intérieur des bornes et de
prendre son plus grand minorant convexe, tandis que la seconde est d’approcher l’estimateur
obtenu à l’aide d’une spline définie dans l’espace des fonctions de Pickands A. Ces auteurs
mentionnent le résultat pertinent que pour chacune de ces approches, l’estimateur corrigé est
consistant si l’estimateur initial l’est.

Voici un exemple pour chacune de ces approches.

Plus grand minorant convexe

L’idée de ce type de correction est de prendre le plus grand minorant de l’estimateur
initial qui est élément de A. Un exemple de cette approche qui est similaire à celle qui sera
présentée dans la correction proposée est de définir

Â∗(t) = min(1, max(Â(t), 1 − t, t)), t ∈ [0,1]

où Â(t) est l’estimateur initial de la fonction de Pickands. La correction du plus grand mi-
norant convexe peut être approchée en prenant l’enveloppe convexe de Â∗(t) sur un ensemble
fini de points.
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La définition de Â∗(t) assure le respect de la contrainte de bornes, tandis que l’enveloppe
convexe garantit la convexité du nouvel estimateur.

La Figure 3.6 présente la correction du plus grand minorant convexe (PGMC) appliquée
aux estimateurs de Pickands et de CFG. Pour obtenir les plus grands minorants convexes,
les enveloppes convexes des estimateurs ont été calculées en t = {0 ; 0,01 ; 0,02 ; .. ;0,99 ;
1}. Les nouveaux estimateurs obtenus respectent les contraintes imposées par les fonctions
de Pickands.

Figure 3.6. Exemple de correction par le PGMC.

Spline définie dans A

L’idée de ce type de correction est d’approcher l’estimateur initial Â de la fonction de
Pickands par une spline dans A. Plusieurs méthodes existent pour ce faire, une des plus
populaires est celle présentée dans Hall et Tajvidi (2000) à l’aide d’une spline de degrés 3 ou
plus.

L’exemple utilisé est la correction de Fils-Villetard et al. (2008). L’idée de la correction
FGS est de projeter l’estimateur initial dans l’espace des fonctions de Pickands, A, de sorte
à minimiser la distance quadratique entre l’estimateur et sa projection dans A. N’ayant pas
une forme explicite pour la projection optimale, les auteurs proposent l’algorithme suivant
permettant d’obtenir une spline linéaire approximative. Les auteurs précisent que les avan-
tages d’autres types de splines sont négligeables.
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La spline linéaire est composée de m + 1 segments, où m est un hyperparamètre que doit
fournir l’usager. Les auteurs mentionnent que m = 20 est généralement suffisant.

Le lecteur est encouragé à consulter l’article de Fils-Villetard et al. (2008) pour la justification
théorique. Seul l’algorithme est présenté ici.

Algorithme de la correction FGS :

(1) Estimer la fonction de Pickands A par un estimateur initial Â.

(2) Choisir le nombre de segments, m+1, de la spline linéaire pour approcher Â dans A.

(3) Définir les constantes du problème

Am+1 = 1
6m



2 1 0 0 · · · 0
1 4 1 0 · · · 0
0 1 4 1 · · · 0
... . . . . . . . . .
0 · · · 1 4 1
0 · · · 0 1 2


et

bi =



1
3m

(
1
2Â(0) + Â

(
1

2m

))
si i = 0

1
3m

(
Â

(
2i−1
2m

)
+ Â

(
i

m

)
+ Â

(
2i+1
2m

))
si i = 1, . . . , m − 1

1
3m

(
Â

(
2m−1

2m

)
+ 1

2Â(1)
)

si i = m

(4) Trouver λ qui minimise λTAλ − 2λTb, λ ∈ Λm ⊂ Rm+1 fermé et convexe,
s.à. 

λ0 = λm = 1

1 − λ1 ≤ 1
m

λi−1 − 2λi + λi+1 ≥ 0

1 − λm−1 ≤ 1
m
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De sorte que AF GS = ∑m
i=0 λihim, avec him qui est l’unique fonction linéaire par morceaux à m

nœuds telle que him(j/m) = δi(j). Autrement dit, AF GS est la fonction qui relie linéairement
les points ( i

m
, λi)i=0,1,...,m.

Un inconvénient de l’algorithme présenté est la nécessité de fournir l’hyperparamètre m.

La Figure 3.7 illustre la correction FGS appliquée à l’estimateur de Pickands et de CFG
pour les données présentées plus tôt. L’estimateur de Pickands initial est considérablement
corrigé. L’estimateur de CFG initial a une forme près de celle souhaitée, la correction appor-
tée est légère. Les nouveaux estimateurs obtenus respectent les bornes et la convexité deman-
dées. Contrairement à la correction du PGMC, la correction par spline permet l’existence de
t0 tel que pour l’estimateur corrigé Â∗, Â∗(t0) ≥ Â(t0) (pour t0 tel que Â(t0) respecte les
bornes de la fonction de Pickands).

Figure 3.7. Correction d’estimateurs par FGS.

Conclusion

Les estimateurs présentés ci-haut ainsi que la correction FGS appliquée sur l’estimateur
de CFG seront repris lors de simulations dans le prochain chapitre. L’estimateur de CFG sert
également de point de départ pour le développement de la correction convexe et de l’estimateur
bayésien qui forment le sujet de ce mémoire.
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Chapitre 4

Correction convexe et estimateur bayésien

Dans ce dernier chapitre, la correction d’estimateurs et l’estimateur bayésien proposés sont
développés. Pour chacun, les prérequis théoriques sont présentés, suivi de la correction ou de
l’estimateur, puis quelques résultats et une application sur les données générées au chapitre 3.
Suivant la présentation des deux contributions de ce mémoire, elles sont évaluées et comparées
à quelques estimateurs et corrections du chapitre 3 sur un ensemble de données générées à
partir de 18 distributions de copules de valeurs extrêmes. L’évaluation est basée sur l’erreur
quadratique moyenne entre l’estimateur obtenu et la fonction de Pickands qui a servi à
générer les données.

Correction par centralisation et enveloppe convexe
Comme son nom le suggère, la correction proposée est divisée en deux étapes. Une pre-

mière de centralisation, puis une seconde d’obtention de l’enveloppe convexe de l’estimateur.
La centralisation des données est une idée originale. Elle est basée sur la propriété développée
ci-bas. La correction est conçue pour les estimateurs qui sont une fonction des observations
zi. L’estimateur de CFG en est un exemple.

Propriété de la variable aléatoire Z

On définit la variable aléatoire Z = log(U) / log(UV), avec (U,V) distribué selon la copule
C. Le lemme suivant permet d’obtenir la propriété de Z qui justifie la correction proposée.

Lemme 4.0.1. Soit X une variable aléatoire dont l’espérance existe et H sa fonction de
répartition, on obtient

E(X) =
∫ ∞

0
(1 − H(t))dt −

∫ 0

−∞
H(t)dt.



Démonstration. En effet,

E(X) =
∫ ∞

−∞
xP(dx) =

∫ ∞

0
xP(dx) +

∫ 0

−∞
xP(dx)

=
∫ ∞

0

∫ x

0
dtP(dx) −

∫ 0

−∞

∫ 0

x
dtP(dx)

=
∫ ∞

0

∫ ∞

t
P(dx)dt −

∫ 0

−∞

∫ t

−∞
P(dx)dt

=
∫ ∞

0
(1 − H(t))dt −

∫ 0

−∞
H(t)dt

□

Posons Y = log
(

Z
1−Z

)
, dy = dz

z(1−z) , on a

P(Y ≤ y) = P
(

Z ≤ ey

1 + ey

)
= H

(
ey

1 + ey

)
:= G(y).

Soit A la fonction de Pickands qui permet de générer Z et H la fonction de répartition de Z,
on rappelle que Capéraà et al. (1997) ont montré

A(t) = exp

{ ∫ t

0

H(z) − z

z(1 − z) dz

}
= exp

{
−

∫ 1

t

H(z) − z

z(1 − z) dz

}
.

Ceci donne,

log A(1/2) =
∫ 1/2

0

H(z) − z

z(1 − z) dz =
∫ 1/2

0

H(z)
z(1 − z)dz + log(1/2)

et

log A(1/2) = −
∫ 1

1/2

(H(z) − 1) − (z − 1)
z(1 − z) dz =

∫ 1

1/2

(1 − H(z))
z(1 − z) dz + log(1/2).

⇒
∫ 1

1/2

(1 − H(z))
z(1 − z) dz −

∫ 1/2

0

H(z)
z(1 − z)dz = 0

⇒
∫ ∞

0
(1 − G(y))dy −

∫ 0

−∞
G(y)dy = E(Y ) = 0, par le lemme.

Ainsi, E(Y ) = 0 = E
(

log
(

Z
1−Z

))
. Cette propriété de Y – et de Z – est centrale dans notre

proposition de correction.

Enveloppe convexe

La deuxième partie de notre correction se base sur le concept de l’enveloppe convexe d’une
fonction – ou d’un estimateur dans notre cas. On doit alors proprement définir l’enveloppe
convexe et donner des méthodes pour l’approcher numériquement.
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Définition 4.0.2. Soit E un espace et A un sous-ensemble de E, on définit l’enveloppe
convexe de A comme l’intersection de tous les sous-ensembles convexes de E qui contiennent
A.

Une propriété de l’enveloppe convexe est d’être le plus petit ensemble convexe de E qui
contient A. Cette propriété est fort désirable puisqu’elle nous permet d’obtenir le plus grand
minorant convexe d’un estimateur.

Pour un estimateur quelconque de la fonction de Pickands, il faut employer une approxi-
mation de son enveloppe convexe parce qu’on ne peut pas obtenir la fonction explicite. Plu-
sieurs algorithmes existent pour obtenir cette approximation : Gift Wrapping (1973), Quick-
hull (1977), Chan’s algorithm (1996).

Correction par centralisation et enveloppe convexe

Soit un estimateur initial de la fonction de Pickands Â, on définit

Â∗(t) = min(1, max(Â(t), 1 − t, t))), t ∈ [0,1].

La correction de l’estimateur de la fonction de Pickands consiste à obtenir l’estimateur Â∗

basé les observations zi transformées -notées z∗
i - et à prendre l’enveloppe convexe de Â∗ pour

garantir la convexité.

Soit les observations zi, nous centrons les observations yi = log
(

zi

1−zi

)
,

de telle sorte que

y∗
i = yi − ȳ et z∗

i = ey∗
i

1 + ey∗
i
,

où ȳ est la moyenne empirique des yi, et i = {1, 2, . . . , n}. Nous rappelons que la raison de
la centralisation des yi est le résultat du lemme 4.1 qui mentionne E(Y ) = 0.

Pour l’estimateur de CFG, l’action de centraliser les observations zi vient garantir le
respect des bornes inférieures de la fonction de Pickands. En effet, on peut montrer que
A0

n(t) et A1
n(t) respectent les bornes inférieures sur [0,1/2] et [1/2,1] respectivement et que

A0
n = A1

n.

Effectivement, on a sous cette égalité

log(ACF G
n (t)) = p(t) log(A0

n(t)) + (1 − p(t)) log(A1
n(t)) = log(A0

n(t)) = log(A1
n(t))
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où A0
n et A1

n respectent les bornes sur [0,1/2] et [1/2,1] respectivement, ce qui implique que
ACF G

n respecte les bornes sur tout son domaine.

Montrons d’abord que A0
n(t) et A1

n(t) respectent les bornes sur [0,1/2] et [1/2,1] respective-
ment.

Pour 0 ≤ t ≤ 1, H une fonction de répartition quelconque à domaine [0,1], A0(t) et A1(t)
étant définies telles que

A0(t) = exp

{ ∫ t

0

H(u) − u

u(1 − u) du

}
et A1(t) = exp

{
−

∫ 1

t

H(u) − u

u(1 − u) du

}
.

Ceci implique

log A0(t) =
∫ t

0

H(u) − u

u(1 − u) du =
∫ t

0

H(u)
u(1 − u)du −

∫ t

0

1
(1 − u)du

=
∫ t

0

H(u)
u(1 − u)du + log(1 − t)

⇒ A0(t) ≥ 1 − t, car H(u) ≥ 0 et 0 ≤ u ≤ t ≤ 1.

De même, on a

log A1(t) = −
∫ 1

t

H(u) − u

u(1 − u) du =
∫ 1

t

u − H(u)
u(1 − u) du =

∫ 1

t

(1 − H(u)) − (1 − u)
u(1 − u) du

=
∫ 1

t

(1 − H(u))
u(1 − u) du −

∫ 1

t

1
u

du

=
∫ 1

t

(1 − H(u))
u(1 − u) du + log(t)

⇒ A1(t) ≥ t.

Montrons maintenant que A0
n = A1

n.

D’abord, on a

n∏
i=1

(
z∗

i

1 − z∗
i

)1/n

= exp
(

log
( n∏

i=1

(
z∗

i

1 − z∗
i

)1/n))

= exp
(

1/n
n∑

i=1
log

(
z∗

i

1 − z∗
i

))
= exp(ȳ∗) = exp(0) = 1.
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Figure 4.1. Estimateur de CFG corrigé.

Ceci implique

1 =
n∏

i=1

z∗
i

1 − z∗
i

=
j∏

i=1

z∗
i

1 − z∗
i

n∏
i=j+1

z∗
i

1 − z∗
i

⇔
j∏

i=1

1 − z∗
i

z∗
i

=
n∏

i=j+1

z∗
i

1 − z∗
i

.

Donc, par leur forme développée dans l’annexe 2,

A0
n(t) = tj/n(1 − t)1−j/n

j∏
i=1

1 − z∗
i

z∗
i

= tj/n(1 − t)1−j/n
n∏

i=j+1

z∗
i

1 − z∗
i

= A1
n(t),

pour t ∈ [z(j), z(j+1)] et n ∈ {1,2,..., n}. Pour t ∈ [0, z(1)] et t ∈ [z(n), 1], l’égalité est directe.

L’enveloppe convexe sur l’estimateur de CFG évalué sur les z∗
i permet alors de respecter les

contraintes de borne supérieure et de convexité.

La correction de l’estimateur de CFG sur les données simulées au chapitre 3 est illustrée
dans la Figure 4.1. L’estimateur initial est illustré à titre comparatif.
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Estimateur bayésien
On présente maintenant notre estimateur bayésien de la fonction de Pickands qui est

aussi basé sur une idée originale. Pour comprendre son fonctionnement, le lecteur doit être
familier avec le contexte bayésien et avec les processus de Dirichlet. Les pages suivantes
contiennent le nécessaire à la compréhension de l’estimateur proposé.

Contexte bayésien

La statistique est majoritairement présentée à l’aide de l’approche classique. C’est-à-dire
que nous présentons un modèle générateur d’observations qui requiert des paramètres fixes.
Ces paramètres sont généralement notés θ ∈ Rp. À l’aide d’observations recueillies et du
modèle, on peut inférérer sur la valeur de θ. L’estimation de θ est alors entièrement basée
sur l’échantillon, noté x.

La différence de l’approche bayésienne se trouve dans l’interprétation du paramètre θ.
A contrario du cas classique, nous supposons que θ est la réalisation d’une variable aléa-
toire Θ. La variable Θ suit une distribution que doit définir le(la) statisticien(ne) ou
l’expérimentateur(-trice) avant d’observer x. Cette distribution est appelée a priori et est
notée π. Elle doit capturer, du mieux possible, les croyances de l’expérimentateur(-trice) sur
θ. L’approche bayésienne laisse place à un peu de subjectivité qui peut engendrer des contro-
verses.

La méthode bayésienne va alors comme suit. Puisqu’on suppose θ inconnu et aléatoire,
on définit

π(θ) : La distribution a priori de θ, qui capture les croyances sur le
paramètre avant l’observation de x.

f(x|θ) : Le modèle qui permet de générer les observations et qui dépend
du paramètre θ. C’est à l’aide de ce modèle qu’on peut tirer de
l’information sur θ à partir de x.
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π(θ|x) : La distribution a posteriori de θ suivant l’observation de x. Elle
représente la mise-à-jour de nos croyances sur θ suivant l’expé-
rience.

La distribution a posteriori est obtenue par une application du théorème de Bayes.

π(θ|x) = f(θ, x)
f(x) = f(x|θ)π(θ)

f(x)
∝ f(x|θ)π(θ)

f(x) =
∫

Θ f(x|θ)π(θ)dθ est la densité marginale de la variable aléatoire X. Elle peut être
ignorée lors du calcul de la distribution a posteriori puisqu’elle ne dépend pas de θ et peut
facilement être retrouvée.

L’inférence bayésienne de θ est basée sur la distribution a posteriori. Les estimateurs les
plus courants sont :

• E(θ|x) : La moyenne a posteriori.

• argmax
θ∈Θ

π(θ|x) : Le mode a posteriori.

• θ0 tel que P(θ < θ0|x) = P(θ > θ0|x) = 1/2 : La médiane a posteriori.

Dans certains cas, la distribution a posteriori obtenue n’est pas familière ou peut être
impossible à manipuler. Si l’on souhaite faire numériquement l’estimation d’une fonction de
θ, on peut recourir à des simulations numériques pour estimer les valeurs qui nous intéresse
par la loi forte des grands nombres, par exemple. Quelques méthodes pour générer des obser-
vations de telles distributions sont les algorithmes de Monte-Carlo par chaînes de Markov
(MCMC).

Nous venons de présenter l’approche bayésienne paramétrique, c’est-à-dire pour une fa-
mille de modèles connue. Dans le contexte de l’estimation de la fonction de Pickands, nous
désirons faire de l’estimation non paramétrique. L’idée de l’estimation bayésienne non par-
métrique est la suivante.
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On pose une mesure de probabilité a priori π sur F – l’ensemble des distributions possibles
de X. Sans nécessairement avoir de forme explicite pour π, savoir comment générer aléa-
toirement de π est suffisant. Cette distribution a priori permet de modéliser les croyances
a priori de l’expérimentateur(-trice) sur la forme du modèle qu’on souhaite estimer. Depuis
son introduction par Ferguson (1973), les processus de Dirichlet sont le choix de π le plus
populaire.

Processus de Dirichlet

Seule l’intuition et les propriétés pertinentes des processus de Dirichlet sont présentées
ici. Le lecteur s’intéressant à leur développement théorique peut se référer à Ghosh et Rama-
moorthi. (2003).

On définit d’abord X , l’ensemble des valeurs que peut prendre la variable aléatoire X
et M(X ), l’ensemble des mesures de probabilités sur X . On cherche ensuite à définir une
mesure de probabilité π sur M(X ).

Voici une série d’exemples tirés de Ghosh et Ramamoorthi. (2003) qui visent à faciliter la
compréhension du concept de mesure de probabilité sur M(X ).

Exemple : Soit X = {1, 2}.

On a
M(X ) = {(p1, p2) : p1, p2 ≥ 0 et p1 + p2 = 1},

où M(X ) devient alors l’ensemble des valeurs que peut prendre p1, puisque p2 = 1 − p1.
Une mesure de probabilité sur M(X ) est alors une distribution pour p1. Un exemple est la
distribution bêta.

Exemple : On peut généraliser l’exemple précédent à X = {1, 2, . . . , n}.

On a
M(X ) = {(p1, p2, . . . , pn−1) : pi ≥ 0 pour 1 ≤ i ≤ n − 1 et

n−1∑
i=1

pi ≤ 1}

Une mesure de probabilité π sur M(X ) est alors une distribution pour le vecteur
(p1, p2, . . . , pn−1). Un exemple est la généralisation multivariée des lois bêta : la loi de
Dirichlet.
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Un processus de Dirichlet, ce qui nous intéresse, est une généralisation des exemples
précédents pour X = R. Les processus de Dirichlet sont utiles pour modéliser nos croyances
sur la distribution de X, une variable aléatoire à valeur réelle. Ils requierent deux paramètres :

(1) F0 : La meilleure estimation subjective a priori de la fonction de répartition de X.

(2) α : Le niveau d’importance qu’on attribue à F0. Plus α est grand, plus le processus
de Dirichlet a priori est concentré autour de F0.

Comme pour le cas paramétrique, les observations de x permettent de mettre à jour les
croyances sur la distribution de X. Dans le contexte où l’on s’intéresse à l’estimation d’une
fonction de répartition, on a le résultat suivant pour la distribution a posteriori :

Théorème 4.0.3. Soit X1, X2, . . . , Xn des variables aléatoires i.i.d. de fonction de réparti-
tion F et π un processus de Dirichlet pour la distribution a priori de paramètres F0 et α –
notée Dir(α, F0), on a que la distribution a posteriori de F est

F |x ∼ Dir(α + n, F ∗
n)

où F ∗
n = n

n+α
Fn + α

n+α
F0 et Fn est la fonction de répartition empirique des xi. La moyenne

a posteriori est F ∗
n .

Dans le contexte des copules de valeurs extrêmes, nous utilisons ce résultat pour estimer la
fonction de répartition des z∗

i qui permet d’obtenir une estimation de la fonction de Pickands.

Estimateur bayésien

L’estimateur que nous proposons est le suivant

An(t) = exp

{ ∫ t

0

H∗
n(u) − u

u(1 − u) du

}
, t ∈ [0,1]

où H∗
n est l’espérance a posteriori d’un processus de Dirichlet de paramètres :

F0 = F, α = b,

où F est une fonction de répartition bêta(α = a, β = a) a priori pour les observations zi et
avec 1 < a ∈ R, b ∈ R+. Nous appliquons ensuite la correction proposée dans la première
section de ce chapitre pour obtenir la convexité.
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Pour le paramètre F0 du processus de Dirichlet, on peut choisir n’importe quelle fonction
de répartition H telle que

A(t) = exp

{ ∫ t

0

H(u) − u

u(1 − u) du

}
, t ∈ [0,1]

où A est une fonction de Pickands. Le choix de la fonction de répartition a priori d’une
loi bêta(a,a) est arbitraire, mais permet de générer une infinité de fonctions de Pickands
symétriques. Le choix a priori de H est équivalent à choisir une fonction de Pickands a
priori.

La Figure 4.2 illustre des fonctions de Pickands définies respectivement par des fonctions
de répartition de lois bêta(a,a) avec a = {1,1 ;1,2 ;1,4 ;1,6 ;2 ;3}. Ces fonctions sont utiles
lorsque l’expérimentateur(-trice) possède des croyances a priori sur le niveau de dépendance
entre les données.

Figure 4.2. Fonctions de Pickands a priori.

La pertinence du contexte bayésien dans l’estimation d’une fonction de Pickands est due
à la connaissance a priori que la fonction de répartition H de Z doit être convexe sur une
première partie de l’intervalle [0,1] et concave sur la seconde. Autrement dit, il existe un z0
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tel que H(z) − z ≤ 0 si z ≤ z0

H(z) − z ≥ 0 si z > z0.

En effet, on a
∂

∂t
log(A(t)) = H(t) − t

t(1 − t) .

Par la convexité de A, il existe un t0 tel queA′(t) ≤ 0 si 0 ≤ t ≤ t0

A′(t) ≥ 0 si t0 ≤ t ≤ 1.

Ainsi, H(t) − t ≤ 0 si t ≤ t0

H(t) − t ≥ 0 si t > t0.

Nous détenons ainsi des croyances a priori sur H que nous pouvons fournir à l’aide du
contexte bayésien.

De plus, le résultat suivant garantit que l’estimateur bayésien respecte la borne inférieure
des fonctions de Pickands. En effet, elle montre que

A0
n(t) = exp

{ ∫ t

0

H∗
n(u) − u

u(1 − u) du

}
= exp

{
−

∫ 1

t

H∗
n(u) − u

u(1 − u) du

}
= A1

n(t)

lorsque l’estimateur est évalué sur les z∗
i . On le rappelle, A0

n et A1
n respectent la borne infé-

rieure sur [0,1/2] et [1/2,1] respectivement. L’égalité de A0
n et A1

n implique le respect de la
borne inférieure sur tout le domaine.

Proposition 4.0.4. Comme la fonction répartition d’une loi bêta(α = a, β = a) permet de
créer une fonction de Pickands et la fonction de répartition échantillonale des z∗

i permet A0
n

= A1
n pour l’estimateur de CFG, on a pour

H∗
n(z) = α/nF (z) + (n − α)/nFn(z),

avec F la fonction de répartition de loi bêta(a,a) et Fn la fonction de répartition empirique
des zi :
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exp

{ ∫ t

0

H∗
n(u) − u

u(1 − u) du

}
= exp

{ ∫ t

0

α/nF (u) + (n − α)/nFn(u) − u

u(1 − u) du

}

= exp

{
− α

n

∫ 1

t

F (u) − u

u(1 − u) du − (n − α)
n

∫ 1

t

Fn(u) − u

u(1 − u) du

}

= exp

{
−

∫ 1

t

H∗
n(u) − u

u(1 − u) du

}

Un premier avantage de l’estimateur bayésien est qu’il respecte les bornes de la fonction
de Pickands. Les autres principaux avantages sont ceux que l’on trouve généralement dans
l’approche bayésienne. C’est-à-dire l’usage de connaissances a priori sur le phénomène
observé et la consistance de l’estimateur lorsqu’on détient un grand nombre d’observations.

En effet,

∫ t

0

H∗
n(u) − u

u(1 − u) du =
∫ t

0

α/nF (u) + (n − α)/nFn(u) − u

u(1 − u) du

= α

n

∫ t

0

F (u) − u

u(1 − u) du + (n − α)
n

∫ t

0

Fn(u) − u

u(1 − u) du

⇒ lim
n→∞

log(An(t)) = lim
n→∞

(
α

n

∫ t

0

F (u) − u

u(1 − u) du + (n − α)
n

∫ t

0

Fn(u) − u

u(1 − u) du
)

=
∫ t

0

H(u) − u

u(1 − u) du = log(A(t)),

Avec H, la vraie fonction de répartition de Z.

L’avant-dernière égalité est due au fait que l’estimateur de CFG est consistant. Cela rend
l’estimateur proposé consistant.

La Figure 4.3 illustre des estimateurs bayésiens de différentes distributions a priori éva-
luées sur les 30 données générées au chapitre 3. Les processus de Dirichlet a priori ont
comme paramètres des fonctions de répartition bêta(α = 1, β = 1), bêta(α = 2, β = 2),
bêta(α = 3, β = 3) et ont tous le paramètre α = 5.

Simulations
Pour faire l’évaluation de la correction et de l’estimateur proposés, leur erreur quadratique

moyenne est comparée à celle des estimateurs de CFG, de Hall-Tajvidi et de la correction
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Figure 4.3. Estimation par l’estimateur bayésien.

FGS sur l’estimateur de CFG (m = 20), tous présentés au chapitre 3. La comparaison s’ef-
fectue à l’aide d’échantillons de tailles n = 30 et n = 100 générés à partir de 18 distributions
de copules de valeurs extrêmes. Pour chacune des distributions et tailles d’échantillons, 1000
échantillons sont générés pour mesurer les erreurs d’estimation.

Le Tableau 4.1 présente les distributions utilisées dans la simulation.

Les Figure 4.4 et Figure 4.5 illustrent les 18 fonctions de Pickands des copules de valeurs
extrêmes utilisées pour générer les données.

Le Tableau 4.2 présente les erreurs quadratiques moyennes des estimateurs et des correc-
tions appliqués sur les échantillons générés, selon la taille de l’échantillon et la distribution.
Pour utiliser la flexibilité de la correction proposée, la correction de FGS appliquée sur les
données centrées s’y trouve également sous le nom de correction FGSc. Sur cet ensemble de
données simulées, la centralisation donne un estimateur équivalent.

Comme le montre le Tableau 4.2, l’estimateur bayésien proposé a les erreurs quadratiques
moyennes les plus faibles. La correction proposée appliquée sur l’estimateur de CFG réduit
l’erreur moyenne de l’estimateur. L’avantage de la correction proposée comparativement à
celle de FGS est de ne pas nécessiter d’hyperparamètre et a un temps de calcul moyen environ
15 fois plus rapide (0,006 seconde en moyenne par évaluation comparativement à 0,091).
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Tableau 4.1. Description des distributions à partir desquelles les échantillons de la simu-
lation ont étées générées.

Distribution
Logistique r θ ϕ

1.5 1 1
1.5 0.9 0.5
2 1 1
2 0.9 0.5
2 0.75 0.95
3 1 1
3 0.9 0.5

3.25 0.75 0.95
10 0.75 0.95

Mixte θ ϕ
– 0.9 0
– 0.1 0
– 0.5 0
– 0.1 0.25
– 0.5 0.2
– 0.1 0.4
– 1 -0.25
– 0.5 -0.1
– 1.25 -0.3

Figure 4.4. Copules logistiques utilisées.
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Figure 4.5. Copules mixtes utilisées.
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Tableau 4.2. Description des erreurs quadratiques moyennes des estimateurs et des correc-
tions appliqués sur les échantillons générés, selon la taille de l’échantillon.

Estimateurs n = 30 n = 100
Logistique
CFG 2,28 ± 4,37 0,72 ± 1,12
Hall-Tajvidi 2,73 ± 4,92 0,83 ± 1,22
CFG avec correction FGS 1,55 ± 2,23 0,60 ± 0,87
CFG avec correction proposée 2,04 ± 2,84 0,72 ± 1,04
CFG avec correction FGSc 1,61 ± 2,17 0,62 ± 0,87
Estimateur bayésien (a = 3) 1,36 ± 1,78 0,57 ± 0,76
Estimateur bayésien (a = 1.6) 1,40 ± 1,86 0,61 ± 0,81
Estimateur bayésien (a = 1.2) 1,57 ± 2,06 0,65 ± 0,86
Mixte
CFG 4,51 ± 7,68 1,32 ± 1,94
Hall-Tajvidi 5,70 ± 9,28 1,74 ± 2,39
CFG avec correction FGS 2,52 ± 3,04 0,93 ± 1,24
CFG avec correction proposée 3,02 ± 3,32 1,04 ± 1,34
CFG avec correction FGSc 2,61 ± 3,07 0,96 ± 1,24
Estimateur bayésien (a = 3) 2,62 ± 3,18 0,94 ± 1,24
Estimateur bayésien (a = 1.6) 2,22 ± 2,75 0,90 ± 1,20
Estimateur bayésien (a = 1.2) 2,07 ± 2,58 0,89 ± 1,19
Total
CFG 3,39 ± 6,02 1,02 ± 1,53
Hall-Tajvidi 4,21 ± 7,10 1,28 ± 1,80
CFG avec correction FGS 2,03 ± 2,63 0,78 ± 1,05
CFG avec correction proposée 2,53 ± 3,08 0,88 ± 1,19
CFG avec correction FGSc 2,11 ± 2,62 0,79 ± 1,05
Estimateur bayésien (a = 3) 1,99 ± 2,48 0,75 ± 1,00
Estimateur bayésien (a = 1.6) 1,81 ± 2,30 0,75 ± 1,01
Estimateur bayésien (a = 1.2) 1,82 ± 2,32 0,77 ± 1,02

Les mesures sont présentées sous forme de moyenne ± écart-type.
Les valeurs de la table sont de l’ordre 10−3.

FGSc : Correction de FGS sur les données centrées
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Conclusion

Nous avons été confrontés au problème d’estimation de la fonction de Pickands associée à
une copule de valeurs extrêmes. Plusieurs estimateurs existent tels que ceux de CFG, de
Hall-Tajvidi et la correction de FGS.

Les estimateurs de CFG et de Hall-Tajvidi sont les estimateurs classiques qui performent
le mieux en pratique. Toutefois, ils ne respectent pas les contraintes imposées de la fonction
de Pickands. Nous proposons alors deux alternatives pour faire l’estimation. La première est
une correction d’estimateurs basée sur une nouvelle propriété de la variable aléatoire des
observations qui vient améliorer la performance d’estimateurs en les forçant à respecter les
contraintes exigées de la fonction de Pickands. La seconde est un estimateur bayésien basé
sur les connaissances a priori que la fonction de répartition de Z, une transformation de
la variable aléatoire des observations, doit prendre une certaine forme. Cette idée originale,
combinée avec la correction proposée, donne un estimateur performant de la fonction de
Pickands qui respectent ses contraintes.

Corriger un estimateur de la fonction de Pickands pour qu’il respecte les contraintes
imposées est une idée qui date de Pickands (1981), dans la publication du premier estimateur.
Fils-Villetard et al. (2008) ont proposé une correction d’estimateurs performante. Par contre,
elle nécessite l’ajustement d’un hyperparamètre et elle fonctionne à l’aide d’un algorithme
complexe et couteux en temps de calculs (il requiert une optimisation à contraintes linéaires).
La nouvelle propriété découverte nous permet de proposer une correction d’estimateurs simple
et rapide qui rivalise celle de FGS sur les cas particuliers obtenus dans notre simulation. De
plus, notre correction est flexible puisque l’ajustement basé sur la nouvelle propriété peut être
combiné avec d’autres corrections de la convexité pour tenter de la rendre plus performante.

Parmi tous les estimateurs considérés dans ce mémoire et sur les bases de simulations,
l’estimateur bayésien proposé a obtenu, pour trois distributions a priori différentes et des
paramètres non ajustés, les erreurs quadratiques moyennes les plus basses. De plus, notre
estimateur ne considérait que des fonctions de répartition a priori de loi bêta. L’estimateur
peut être ajusté au problème dans lequel il sera appliqué en utilisant d’autres distributions



a priori et des paramètres reflétant mieux les connaissances a priori de l’expérimentateur(-
trice) que ceux utilisés dans cet ouvrage.

Ce mémoire propose alors deux méthodes d’estimation de la fonction de Pickands perfor-
mantes, basées sur des idées originales et qui ont la flexibilité d’être ajustées et modifiées de
manière à mieux répondre aux besoins pour lesquels elles sont requises.
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Annexe 1 : Preuve univariée d’équivalence du max-stable

Par définition, si G est max-stable, elle est une distribution de valeurs extrêmes.

Si G est une distribution de valeurs extrêmes, on a pour an = nγ et bn = (nγ − 1)/γ,

Gn
γ(anx + bn) = expn(−(1 + γ[nγx + (nγ − 1)/γ]−1/γ))

= expn(−[nγ(1 + γx)]−1/γ)

= exp(−(1 + γx)−1/γ)

= G(x)





Annexe 2 : Calculs de Capéraà, Fougères et Genest (1997)

Sans perte de généralité, on suppose ici que les variables aléatoires Zi sont ordonnées. C’est-
à-dire

0 < Z1 < Z2 < . . . < Zn < 1.

Si t ∈ [0, Z1], on a :

log A0
n(t) =

∫ t

0

Hn(z) − z

z(1 − z) dz =
∫ t

0

−1
(1 − z)dz = log(1 − z)|z=t

z=0 = log(1 − t)

log A1
n(t) = −

∫ 1

t

Hn(z) − z

z(1 − z) dz = −
( n−1∑

k=1

∫ Zk+1

Zk

k/n − z

z(1 − z)dz +
∫ Z1

t

−1
(1 − z) +

∫ 1

Zn

1
z

dz
)

= −
( n−1∑

k=1

∫ Zk+1

Zk

k/n

z(1 − z)dz −
n−1∑
k=1

∫ Zk+1

Zk

1
(1 − z)dz + log(1 − z)|z=Z1

z=t + log(z)|z=1
z=Zn

)

= −
( n−1∑

k=1
k/n(log z − log(1 − z))|z=k+1

z=k +
n−1∑
k=1

log(1 − z)|Zk+1
Zk

+ log(1 − Z1)−

log(1 − t) − log(Zn)
)

= −
( n−1∑

k=1
k/n(log

(
Zk+1(1 − Zk)
Zk(1 − Zk+1)

)
) + log(1 − Zn) − log(1 − t) − log(Zn)

)

= − log
(

Πn−1
k=1

(
Zk+1

(1 − Zk+1)
(1 − Zk)

Zk

)k/n)
+ log(Zn/(1 − Zn)) + log(1 − t)

= − log
(

Πn−1
k=1

((1 − Zk)
Zk

)1/n)
− log

(1 − Zn

Zn

n−1/n)
+ log(Zn/(1 − Zn)) + log(1 − t)

= − log
(

Πn
k=1

((1 − Zk)
Zk

)1/n)
+ log(1 − t)

Ainsi, on a



An(t) = A0
n(t)p(t)A1

n(t)1−p(t)

= (1 − t)p(t) ∗ exp
(

− log
(

Πn
k=1

((1 − Zk)
Zk

)1/n)
+ log(1 − t))1−p(t)

)

= (1 − t)p(t) ∗ exp
(

log
(

Πn
k=1

(
Zk

(1 − Zk)

)1/n)
+ log(1 − t))1−p(t)

)

= (1 − t)p(t) ∗ exp
(

log
(

Πn
k=1

(
Zk

(1 − Zk)

)1/n))
(1 − t))1−p(t)

= (1 − t) ∗
(

Πn
k=1

(
Zk

(1 − Zk)

)1/n)
= (1 − t)Qn

Si t ∈ [Zn, 1], on a :

log A0
n(t) =

∫ t

0

Hn(z) − z

z(1 − z) dz =
∫ Z1

0

−dz

1 − z
+

n−1∑
i=1

∫ Zi+1

Zi

i/n − z

z(1 − z)dz +
∫ 1

Zn

dz/z

= log(1 − z)|z=Z1
z=0 + log(z)|z=t

Zn
+

n−1∑
i=1

i/n
∫ Zi+1

Zi

1
z(1 − z)dz−

n−1∑
i=1

∫ Zi+1

Zi

−1
(1 − z)dz

= log(1 − Z1) + log(t) − log Zn +
n−1∑
i=1

i/n
[

log(z)−

log(1 − z)
]z=Zi+1

z=Zi

−
n−1∑
i=1

log(1 − z)|z=Zi+1
z=Zi

= log(t) − log Zn +
n−1∑
i=1

[
log(z/(1 − z))i/n

]z=Zi+1

z=Zi

+ log(1 − Zn)

= log(t) + log((1 − Zn)/Zn) +
n−1∑
i=1

[
log

(
Zi+1

1 − Zi + 1
1 − Zi

Zi

)i/n]

= log(t) + log((1 − Zn)/Zn) +
[

log Πn−1
i=1

(
Zi+1

1 − Zi + 1
1 − Zi

Zi

)i/n]

= log(t) + log Πn
i=1

(1 − Zi

Zi

)1/n

log A1
n(t) = −

∫ 1

t

Hn(z) − z

z(1 − z) dz = −
∫ 1

t
dz/z = − log(z)|z=1

z=t = log(t)

Ainsi, on a
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An(t) = A0
n(t)p(t)A1

n(t)1−p(t) = tp(t)
[
Πn

i=1

(1 − Zi

Zi

)1/n]p(t)
t1−p(t)

= t
[
Πn

i=1

(
Zi

1 − Zi

)1/n]−p(t)

Si t ∈ [Zj, Zj+1], on a :

log A0
n(t) =

∫ t

0

Hn(z) − z

z(1 − z) dz =
∫ Z1

0

−dz

1 − z
+

j−1∑
i=1

∫ Zi+1

Zi

i/n − z

z(1 − z)dz +
∫ t

Zj

j/n − z

z(1 − z)dz

= log(1 − Z1) +
j−1∑
i=1

i/n
[

log(z) − log(1 − z)
]z=Zi+1

z=Zi

+
j−1∑
i=1

log(1 − z)|z=Zi+1
z=Zi

+ j/n
∫ t

Zj

dz

z(1 − z) + log(1 − z)|z=t
z=Zj

= log(1 − Z1) +
j−1∑
i=1

i/n
[

log(z) − log(1 − z)
]z=Zi+1

z=Zi

+ log(1 − Zj) − log(1 − Z1)

+ j/n log(t) − j/n log(1 − t) − j/n log Zj + j/n log(1 − Zj) + log(1 − t) − log(1 − Zj)

= log(tj/n) + log
(1 − Zj

Zj

j/n)
+ log(1 − t)(n−j)/n +

j−1∑
i=1

log
[

Zi+1

1 − Zi+1

1 − Zi

Zi

i/n]

= log(tj/n) + log(1 − t)(n−j)/n +
j∑

i=1
log

[1 − Zi

Zi

1/n]

− log A1
n(t) =

∫ 1

t

Hn(z) − z

z(1 − z) dz =
∫ Zj+1

t

j/n − z

z(1 − z)dz +
n−1∑

i=j+1

∫ Zi+1

Zi

i/n − z

z(1 − z)dz +
∫ 1

Zn

1
z

dz

= j/n(log Zj+1 − log(1 − Zj+1) − log(t) + log(1 − t)) + log(1 − Zj+1) − log(1 − t)

+
n−1∑

i=j+1
i/n(log

(
Zj+1

1 − Zj+1

1 − Zi

Zi

)
) +

n−1∑
i=j+1

log(1 − z)|z=Zi+1
z=Zi

− log(Zn)

= log
(1 − t

t

j/n)
− log(1 − t) +

n−1∑
i=j+1

log
(1 − Zi

Zi

1/n)
+ log

(
Zn

1 − Zn

(n−1)/n)

+ log(1 − Zn

Zn

)

= log
(1 − t

t

j/n)
− log(1 − t) +

n∑
i=j+1

log
(1 − Zi

Zi

1/n)

= log((1 − t)(j−n)/n) − log(tj/n) +
n∑

i=j+1
log

(1 − Zi

Zi

1/n)
Ainsi,
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log A1
n(t) = log((1 − t)1−j/n) + log(tj/n) +

n∑
i=j+1

log
(

Zi

1 − Zi

1/n)
On obtient alors

An(t) =
[
tj/n(1 − t)1−j/nΠj

i=1
1 − Zi

Zi

1/n]p(t)[
tj/n(1 − t)1−j/nΠn

i=J+1
Zi

1 − Zi

1/n]1−p(t)

= tj/n(1 − t)1−j/nQ
−p(t)
j (Qn/Qj)1−p(t)

= tj/n(1 − t)1−j/nQ−1
j Q1−p(t)

n
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Annexe 3 : Algorithme de l’estimateur bayésien

Algorithme de l’estimateur bayésien :

(1) Choisir une fonction de Pickands ou une fonction de répartition de Z a priori basée
sur nos croyances.

(2) Choisir le paramètre α du processus de Dirichlet (le niveau d’importance qu’on
attribue à notre fonction de répartition a priori).

(3) Centré les données log
(

zi

1−zi

)
.

(4) Calculer numériquement l’intégrale

An(t) = exp

{ ∫ t

0

H∗
n(u) − u

u(1 − u) du

}
, t ∈ [0,1]

où H∗
n est l’espérance a posteriori d’un processus de Dirichlet basée sur les données

centrées.

(5) Appliquer une correction pour la convexité.



Implémentation de l’algorithme en R :

c en t r a l i z e_Z <− f u n c t i o n ( z ) {

# To the Y space
y <− l o g ( z / (1−z ) )

# c e n t r a l i z a t i o n
y_bar <− mean( y )
y_ <− y − y_bar

# To the Z space
re tu rn ( exp (y_) / (1 + exp (y_) ) ) }

c fg_bayes <− f u n c t i o n ( t , a lpha = 5 , data , c e n t r a l i z e = F, a = 3 , b = 3) {

#Set up data
n <− nrow ( data )
z <− l o g ( data [ , 1 ] ) / l o g ( data [ , 1 ] ∗ data [ , 2 ] )
z <− s o r t ( z )
z <− cen t r a l i z e_Z ( z )

# Empir i ca l f u n c t i o n
Fn <− s t a t s : : e c d f ( z )
z_ <− c (0 , z , 1 )

# Term to be i n t e g r a t e f o r t he e s t ima to r
i n t e g r a n t e <− f u n c t i o n ( x ) {

(n / (n+a lpha ) ∗ Fn( x ) + a lpha / (n + a lpha ) ∗ pbe ta ( x , a , b ) − x ) /
( x∗(1−x ) )

}
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# I n t e g r a t i o n to o b t a i n the l o g e s t ima to r ( in the form o f CFG)
c f g_e s t ima t e s <− sapp l y ( 2 : ( l e n g t h ( z_) −1) , f u n c t i o n ( i ) {

i n t e g r a t e ( i n t e g r a n t e , l ower = z_ [ i −1] , upper = z_ [ i ] ) $ va l ue

})
Az <− pmin ( exp ( c (cumsum( c (0 , c f g_e s t ima t e s ) ) , 0 ) ) , 1)

# Convex i ty o b t e n t i o n
c o n v h u l l _ c h u l l <− s o r t ( c h u l l ( cb ind (z_ , Az ) ) )
t_ <− unique ( s o r t ( c ( t , z_ [ c o n v h u l l _ c h u l l ] ) ) )

e s t i m a t e s <− rep (NA, l e n g t h ( t_ ) )
e s t i m a t e s [ which ( t_ %in% z_ [ c o n v h u l l _ c h u l l ] ) ] <− Az [ c o n v h u l l _ c h u l l ]

data_ <− cb ind ( t = t_ , A = e s t i m a t e s )
c f g_e s t ima t e s <− zoo : : na . approx ( data_ [ , "A" ] , x = t_ )

c f g_e s t ima t e s <− c f g_es t ima t e s [ which ( t_ %in% t ) ]
ordered_es t <− rep (0 , l e n g t h ( c f g_e s t ima t e s ) )
ordered_es t [ order ( t ) ] <− c f g_es t ima t e s

ordered_es t
}
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