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Résumé

Faire I'estimation d’une copule de valeurs extrémes bivariée revient a estimer A, sa fonction
de Pickands qui lui est associée. Cette fonction A :[0,1] — [0,1] doit satisfaire certaines

contraintes :

max{l —¢,t} < A(t) <1, t€]0,1]

A est convexe.

Plusieurs estimateurs ont été proposés pour estimer cette fonction A, mais peu respectent
ses contraintes imposées. La contribution principale de ce mémoire est d’introduire une tech-
nique simple de correction d’estimateurs de la fonction de Pickands de sorte a ce que les
estimateurs corrigés respectent les contraintes exigées. La correction proposée utilise une
nouvelle propriété du vecteur aléatoire bivarié a valeurs extrémes, combinée avec ’enveloppe

convexe de l'estimateur obtenu pour garantir le respect des contraintes de la fonction A.

La seconde contribution de ce mémoire est de présenter un estimateur bayésien non
paramétrique de la fonction de Pickands basé sur la forme introduite par Capéraa et al.
(1997). L’estimateur utilise les processus de Dirichlet pour estimer la fonction de répartition

d’une transformation du vecteur aléatoire bivarié a valeurs extrémes.

Des analyses par simulations sont produites sur un ensemble d’estimateurs pour mesu-
rer la performance de la correction et de I'estimateur bayésien proposés, sur un ensemble
de 18 distributions de valeurs extrémes bivariées. La correction améliore 'erreur quadra-
tique moyenne sur l’ensemble des niveaux. L’estimateur bayésien proposé obtient 1’erreur

quadratique moyenne minimale pour les estimateurs considérés.

Mots clés : Copules, valeurs extrémes, fonctions de Pickands, estimation avec

contraintes, estimation bayésienne.






Abstract

Estimating a bivariate extreme-value copula is equivalent to estimating A, its associated

Pickands function. This function A: [0,1] — [0,1] must satisfy some constraints :

max{l —t,t} < A(t) <1, te[0,1]

A is convex.

Many estimators have been proposed to estimate A, but few satisfy the imposed con-
straints. The main contribution of this thesis is the introduction of a simple correction tech-
nique for Pickands function estimators so that the corrected estimators respect the required
constraints. The proposed correction uses a new property of the extreme-value random vec-
tor and the convex hull of the obtained estimator to guaranty the respect of the Pickands

function constraints.

The second contribution of this thesis is to present a nonparametric bayesian estimator of
the Pickands function based on the form introduced by Capéraa, Fougeres and Genest (1997).
The estimator uses Dirichlet processes to estimate the cumulative distribution function of a

transformation of the extreme-value bivariate vector.

Analysis by simulations and a comparison with popular estimators provide a measure of
performance for the proposed correction and bayesian estimator. The analysis is done on 18
bivariate extreme-value distributions. The correction reduces the mean square error on all
distributions. The bayesian estimator has the lowest mean square error of all the considered

estimators.

Keywords: Copula, Extreme Value, Pickands Function, Constraint Estimation,

Bayesian Estimation.






Table des matieres

<] 10 <P 5)
N 011 7 i Y P 7
Liste des tableaux . .....cvitiiiiiiii it i i i ittt iieieneeneanannns 11
Table des figures .. ..coov ittt i i it ettt ittt ettt 13
Liste des sigles et des abréviations............ ... i i, 15
Remerciements. . ......couinuiiiiiiiiiiiiiiiiiiiitiittnetnntnneenennesannnns 17
Introduction ..... ..ottt it it it i i ettt 19
Chapitre 1. Théorie des valeurs extrémes...........coviiinineneneennnn. 23
Théoreéme des valeurs extrémes .. ... ... 23
Chapitre 2. Copules de valeurs exXtrémes ...........ccoviiiienenennrnennnns 27
COPULES . . .o 27
Théoreme de SKIar .. ... 28
Bornes de Fréchet-Hoeffding . ...... ... 31
Copules de valeurs extrémes .. ... ... i 31
Chapitre 3. Estimateurs et corrections non paramétriques................ 37
Estimateurs . ... 38
Estimateur de Pickands (1981) .. ... ... 38
Estimateur de Deheuvels (1991) ... o 39
Estimateur de Capéraa, Fougeres et Genest (1997).......... ..o, 40
Estimateur de Hall-Tajvidi (2000) ........coouiiiii e 43
Correction d’estimateurs. ... .. ... 45
Plus grand minorant CONVEXe ... ........ ...t 45
Spline définie dans A .. ... 46



CONCIUSION « .« e v et e e e 48

Chapitre 4. Correction convexe et estimateur bayésien ................... 49
Correction par centralisation et enveloppe convexe............ ... ..., 49
Propriété de la variable aléatoire Z ........ ... ..o 49
Enveloppe COnveXe . ... ... 50
Correction par centralisation et enveloppe convexe............... ... ... ... ..... 51
Estimateur bayésien ........ ..o 54
Contexte DAYESIEN . . ... . 54
Processus de Dirichlet . ... . 56
Estimateur bayésien ... ... D7
SIMULALIONS . . . oo 60
[@0) s Uod 1 6] o ) 4 1P 65
Bibliographie. . ... ..o i e i e 67
Annexe 1 : Preuve univariée d’équivalence du max-stable.................. 69
Annexe 2 : Calculs de Capéraa, Fougeres et Genest (1997)................. 71
Annexe 3 : Algorithme de ’estimateur bayésien ................. ... ..., 75

10



Liste des tableaux

4.1  Description des distributions a partir desquelles les échantillons de la simulation

ONt E6EES GENETEES. . ...ttt 62

4.2 Description des erreurs quadratiques moyennes des estimateurs et des corrections

appliqués sur les échantillons générés, selon la taille de I’échantillon. ............ 64

11






Table des figures

1.1

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

Densités de valeurs extrémes. ... ... 26
Données selon différentes forces de dépendance. ........... ... ... ... ........ 29
Données avec faible dépendance (Copule mixte (# =0.1,¢p =0))................. 34

Données avec forte dépendance (Copule logistique (6 = 0.95,¢ = 0.75,7 = 10))... 35

Jeu de données de 30 observations......... ... .. 37
Estimation par I'estimateur de Pickands........... ... ... ... ... ... ... ... ... 39
Estimation par I'estimateur de Deheuvels.............. ... ... ... ... ...... 40
Estimation par 'estimateur de CFG..... ... ... ... 44
Estimation par l'estimateur de Hall-Tajvidi.......... ... ..o oL, 45
Exemple de correction par le PGMC. ... .. ... . 46
Correction d’estimateurs par FGS. ... . . 48
Estimateur de CFG corrigé. ... ... 53
Fonctions de Pickands a priori............. i 58
Estimation par l'estimateur bayésien. ............ ... i i 61
Copules logistiques utilisées. ...... ... 62
Copules mixtes UtIISEES. ... ..o 63

13






Liste des sigles et des abréviations

Estimateur de CFG Estimateur de Capéraa, Fougeres et Genest (1997).

Correction FGS Correction de Fils-Villetard, Guillou et Segers (2008).

iid. [Variables aléatoires] indépendantes et identiquement distri-
buées.

TVE Théorie des valeurs extrémes.

MCMC Monte-Carlo par chaines de Markov.

PGMC Plus grand minorant convexe.

s.a. Sujet & (Contraintes dans le contexte d’optimisation).

15






Remerciements

Mes remerciements les plus sinceres sont adressés a mon directeur de recherche, Pr. Francois
Perron. C’est grace a son aide, a ses conseils et & son soutien financier que ce mémoire peut
étre publié. Je lui suis aussi reconnaissant pour les échanges de fin de rencontre que nous
avons eus et les conseils qu’il m’a partagés pour mes objectifs suivant la publication de ce

mémoire.

Je tiens également a remercier le personnel du département de mathématiques et de
statistique de I’Université de Montréal pour leur disponibilité, pour la qualité de leur ensei-

gnement et pour les ressources nécessaires a la réussite qu’ils ont fournies.

Finalement, je tiens a donner une mention spéciale aux personnes pres de moi qui m’ont
supporté au cours des dernieres années. Plus précisément, a mon pere, Daniel, & ma mere,

Josée, a ma soeur, Jessica, et a ma tres chere Marilou.

17






Introduction

Dans la théorie de ’estimation, on peut s’intéresser a ’'observation d’un évenement a valeurs
extrémes. Des exemples de telles études peuvent étre : les pertes maximales d’un assureur,
le risque d’une action financiere, le nombre maximal de tremblements de terre au cours de
I'année. Pour ce faire, on étudie la fonction de survie P(X > z) du phénomene aléatoire a

I’aide de la théorie des valeurs extrémes.

D’autres parts, il est possible d’étudier et de modéliser la force du lien de dépendance qui
régit deux ou plusieurs phénomenes aléatoires simultanément. Pour ce faire, une approche est
d’estimer la copule des variables aléatoires liées aux évenements. Le terme copule, apporté par
Sklar en 1959, peut étre interprété comme la fonction de dépendance qui lie nos variables
aléatoires ensemble. Cette approche est intéressante puisque selon Ding et Li (2015), la
copule permet de capturer la totalité de la dépendance entre les variables, contrairement au

coeflicient de détermination, par exemple.

Sklar (1959) a montré qu'une fonction de répartition conjointe F', d’un vecteur aléatoire

(X,Y) € X x Y, peut toujours se décomposer dans la forme :
F(zy) = C(Fx(2), Fy(y), (z.y) € X xY

ou Fxy et Fy sont les fonctions de répartition marginales respectives de X et Y, C est la

fonction de dépendance - ou copule.

Le contexte dans lequel baigne les contributions de ce mémoire est celui ou I’on s’intéresse
a l'observation de deux événements a valeurs extrémes simultanément. Autrement dit, on
s'intéresse a la distribution du vecteur aléatoire lié aux deux événements extrémes, en tenant
compte du lien de dépendance qui les régit. Ce contexte nous permet de réunir la théorie
des valeurs extrémes en prenant les marges associées a nos événements et de les joindre par
une copule de valeurs extrémes. Un exemple d’application, présenté dans Tawn (1988), est
I’étude du niveau de la mer maximal de deux ports maritimes britanniques pour évaluer les

risques d’inondation.



Une des particularités des copules de valeurs extrémes a été montrée par Pickands (1981),
ou ce dernier a formulé le théoréme portant son nom qui dit que pour la copule de valeurs

extrémes C il existe une fonction A telle que

C(u,w) = log(uv)A<liogg((ul;))), u,v € [0,1]

Avec
A(t) > max{1 —t,t}, te€]0,1]

A(0) = A(1) =1,

A est convexe sur [0,1].

La copule qui lie nos variables aléatoires a valeurs extrémes peut alors s’exprimer a partir
de la fonction A qui satisfait aux contraintes décrites précédemment. Depuis la publication
de ce théoreme en 1981, cette fonction A - de Pickands - est le sujet d’estimation dans le

contexte d’estimation de phénomenes a valeurs extrémes bivariés.

La difficulté de l'estimation de la fonction de Pickands repose naturellement sur les
contraintes. Plusieurs estimateurs non paramétriques performent bien asymptotiquement,
mais ne respectent pas les contraintes imposées des fonctions de Pickands sur des échantillons
de tailles finies. Plus particulierement, c¢’est le cas pour les estimateurs non paramétriques les
plus populaires qui suivent. Le premier fiit proposé par Pickands lui-méme et porte également
son nom. Ses propriétés asymptotiques, quant a elles, furent montrées par Deheuvels (1984).
Deheuvels proposa aussi, en 1991, une variante de ’estimateur pour corriger le biais lorsque
évalué en 0 et en 1. Quelques années plus tard, Capéraa et al. (1997) proposent un estimateur
performant mieux sur les échantillons de petites tailles. Hall et Tajvidi (2000) proposent a
leur tour un estimateur basé sur les estimateurs précédents, qui a I’avantage de satisfaire la

contrainte de la borne inférieure exigée.

Suivant le non-respect des contraintes imposées, des corrections d’estimateurs ont été
proposées. Selon Fils-Villetard et al. (2008), certaines vont prendre le plus grand minorant
convexe de l'estimateur initial qui respecte les contraintes de A, tandis que d’autres vont
approcher I'estimateur initial par une spline contrainte dans A — 'espace des fonctions de
Pickands.

Notre projet consiste a étudier quelques-unes de ces corrections et a en suggérer une

nouvelle plus simple.
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e Dans le premier chapitre, nous introduisons la théorie des valeurs extrémes (TVE)
qui est essentielle pour obtenir la forme des distributions de variables aléatoires a

valeurs extrémes univariées.

e Dans le second, nous introduisons la notion de copule qui complete la construction de
la loi conjointe. Pour le contexte de copules de valeurs extrémes qui nous intéresse,
il est question d’avoir une copule qui lie deux distributions univariées de valeurs
extrémes, d’ou I'importance du chapitre 1. Nous voyons que cette copule s’exprime
a partir d’'une fonction de Pickands, qui est le sujet de notre estimation. Nous y

présentons ses caractéristiques.

e Dans le troisieme chapitre, nous introduisons brievement quelques estimateurs non
paramétriques et type de corrections les plus populaires, en plus d’en justifier

quelques-uns.

e Dans le quatrieme chapitre, nous présentons une nouvelle correction d’estimateurs
et un nouvel estimateur bayésien, accompagnés de simulations pour mesurer leur

performance comparativement aux estimateurs traditionnels.
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Chapitre 1

Théorie des valeurs extrémes

Ce premier chapitre présente la TVE univariée et sa structure suit celle présentée dans le
livre de de Haan et Ferreira (2006). 11 est construit en vue de donner au lecteur les notions
de base de la TVE univariée, en mettant '’emphase sur les concepts analogues a ceux qui se
trouvent dans la théorie des copules de valeurs extrémes bivariées — la généralisation bivariée

de la TVE.

Le théoreme des valeurs extrémes — qui est le résultat principal de la TVE univariée —
peut étre présenté en parallele au théoreme central limite, comme le font Kreinovich et al.
(2017). Malgré le contraste qu'un s’intéresse a la moyenne partielle d’'un ensemble de va-
riables aléatoires tandis que l'autre s’intéresse au maximum partiel, les deux statistiques
convergent en probabilité et peuvent avoir une distribution limite, sous certaines conditions
et apres normalisation. La différence majeure entre les théoremes est lorsqu’une loi asympto-
tique existe pour le maximum normalisé, elle prend la forme de I'une des lois de probabilité

suivantes : Weibull, Gumbell ou Fréchet.

Théoreme des valeurs extrémes

Soit X1, X, ..., X, des variables aléatoires i.i.d., on définit
Mn = maX(Xl, X27 e ,Xn)

La distribution de M, est le point focal du chapitre.

Dans l'exemple de de Haan et Ferreira (2006) du niveau de la mer lors de tempétes
a Delfzijl, aux Pays-Bas, on s’intéresse a ériger une digue de maniere a ce qu’il y ait une
probabilité d’inondation inférieure & 10~* au cours d’une année. Des données récoltées lors de
1877 tempétes au cours des 100 dernieres années forment un jeu de données d’observations

approximativement indépendantes. On cherche a calculer la hauteur m que doit avoir la



digue pour que
P(M, >m) <1074

ou M, est la variable aléatoire de la hauteur maximale du niveau de la mer atteinte lors

d’une année.

Asymptotiquement, le probleme d’identification de la distribution de M,, n’est pas tres
intéressant. En effet, on remarque que pour X, X, ..., X,,, des variables aléatoires indé-

pendantes et de fonction de répartition F, on a
M, 2 x”,
n—oo
ou z* est le suprémum essentiel. En effet,
P(M, <x)=F"(x)
qui converge a 1 si x > 2% et a 0 si x < z*, lorsque n tend vers I'infini.

On s’intéresse alors a la distribution asymptotique de M,,.

Définition 1.0.1. On dit que la fonction de répartition F appartient au domaine d’attraction
de G, noté F € D(Q), s’il existe deux suites (an)nen > 0 et (by)nen telles que

Lim F™(zay + b,) = G(x),

ou G est une fonction de répartition non dégénérée. De plus, si G existe, sa loi est appelée

une loi de valeurs extrémes.

Nous cherchons alors, si elles existent, des suites de valeurs (ap)nen > 0 et (by)nen, telles

que
M, —b, r
n n G,
A, n—oo

avec G une fonction de répartition non dégénérée.
Autrement dit, on cherche (ay)nen > 0 €t (by)nen, telles que F' € D(G).

Définition 1.0.2. Soit la fonction de répartition G de Xy, Xo, ..., X, i.0.d.. On définit G

comme étant maz-stable s’il existe des suites (an)nen > 0 et (by)nen telles que
G"(apx + b,) = G(z),
pour tout n > 0. Une définition alternative et équivalente est de dire que

p(JW”_b” < :1:) = P(X; < x),

Qn

pour tout n > 0.
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Par définition, la loi de G qui est maz-stable est une loi de valeurs extrémes. Le théoréme

suivant énonce la réciproque de cette remarque.

Théoréme 1.0.3. Soit F' une fonction de répartition telle que F' € D(G), alors G est

maz-stable si et seulement st la loi de G est une loi de valeurs extrémes.

Démonstration. Voir Annexe 1. O

Les dernieres définitions sont donc équivalentes. Elles ménent au théoréeme suivant qui
est le résultat principal de cette section. 1l agit comme analogue au théoréme principal du cas
bivarié.

Théoréme 1.0.4 (Fisher et Tippet (1928), von Mises (1936), Gnedenko (1943)). La fonction

de répartition d’une loi de valeurs extrémes est donnée par

T —p
GV( o >’

avec |t la moyenne et o écart-type de la loi de valeurs extrémes, et

exp(—(l—i—vx)_l”) siy #£0, 1+~x >0

exp(—e™?) siy=0.

G, (z) =

L’indice v est appelé lindice de valeurs extrémes.

Démonstration. Le lecteur s’intéressant a la démonstration du théoréme est référé a
de Haan et Ferreira (2006). O

L’intérét de ce théoreme est de dire que la classe de toutes les distributions de valeurs extrémes
se caractérise en fonction d’un seul parametre, en excluant les parametres de centralisation et
de normalisation. Le probleme d’identification de la distribution asymptotique de M, devient
alors un probleme d’estimation de . Pour faire l’analogie, le résultat bivarié indique qu’une

copule de valeurs extrémes s’écrit a 'aide d’une fonction, que nous chercherons da estimer.

Le parametre v de la distribution de valeurs extrémes permet de controler les queues de
la distribution. En effet,

o si v < 0, la fonction de répartition G. appartient a la loi de Weibull. Cette

distribution est a queue courte.
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Densités de valeurs extrémes

0.6
0.4
E — Gumbel
= — Fréchet
0.0
-2.5 0.0 25 50
X
Figure 1.1. Densités de valeurs extrémes.
e si v = 0, la fonction de répartition G. appartient a la loi de Gumbel. Cette

distribution est a queue légére et tous ses moments existent.

e siy > 0, la fonction de répartition G, appartient a la loi de Fréchet. Cette distribution

est a queue droite épaisse.
Un exemple visuel pour chacune de ces distributions est illustré dans la figure 1.1. Les

densités des distributions sont paramétrisées par p =0 et 0 = 1. Les valeurs de ~y pour les
lois de Gumbel, de Fréchet et de Weibull sont respectivement de 0, de 0,8 et de -0,8.
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Chapitre 2

Copules de valeurs extrémes

"La pertinence des copules vient de leur role dans la modélisation de la structure de dépen-
dance d’une distribution multivariée, sans tenir compte des marges" - Fils-Villetard et al.
(2008)

Copules

La structure de cette section est basée sur le chapitre 2 du livre de Nelsen (2006) et le
lecteur est encouragé a consulter [’ouvrage pour une introduction plus approfondie a la théorie

des copules.

Le but de ce chapitre est de donner au lecteur un outil lui permettant d’étudier la struc-
ture de dépendance qui régit deux variables aléatoires. Un exemple pourrait étre d’analyser
la dépendance entre les notes d’un étudiant dans son cours de calcul intégral et ses notes
dans son cours d’algeébre linéaire. Le résultat de l’analyse pourrait nous informer a savoir
si [’étudiant sacrifie du temps d’étude d’un cours au détriment de [’autre, ou au contraire,
s’il essaie d’uniformément répartir son temps d’étude entre les cours. Cet outil qui lie — ou

accouple — deux variables aléatoires par un lien de dépendance est la copule.

Au cours du chapitre, il est question de représenter une fonction de répartition conjointe
de deux événements aléatoires comme une fonction de ses marges. Cette fonction des marges
est une copule bivariée associée aux deur événements aléatoires. La copule doit donc satisfaire

aux conditions des fonctions de répartitions bivariées.

Ainsi, il pourrait intéresser le lecteur de rappeler certaines propriétés élémentaires des
fonctions de répartition bivariées avant de présenter formellement les copules bivariées et

leur usage en théorie des probabilités.



Pour le restant du chapitre, définissons F' la fonction de répartition du vecteur aléatoire

(X,Y) d valeurs dans X x Y, Fx et Fy les fonctions de répartition marginales respectives.

On a
o F:XxY—[0]]
e X et Y sont indépendantes < F(z, y) = Fx(x)Fy(y), (z,y) € X x Y

o Fy(x)=limF(x,b), z€X.

b—o0

Définition 2.0.1. On définit la copule, C, comme une fonction
C :[0,1]* — [0.1],
telle que :

(1) Pour u € [0,1],
C(u,0) = C(0,u) =0,
et
C(u,1) = C(1l,u) = u.

(2) ¥ uy,ug,v1,v9 € [0,1] avec up < ug, v1 < vy,
C(Ug, UQ) — C(UQ,’Ul) — C(Ul,’UQ) + C(Ul, UQ) Z 0

Note : La deuxiéme propriété énumeérée définit une fonction 2-croissante.

Théoréeme de Sklar

Le théoreme suivant permet le lien entre la définition des copules présentée et l'usage
probabiliste qu’il en est fait. Comme le précise Ding et Li (2015), le théoréme de Sklar
décompose la fonction de répartition conjointe en deux composantes : la copule et les marges

uniformes des variables.

Théoréme 2.0.2 (Sklar (1959)). Soit F une fonction de répartition conjointe avec Fx, Fy

comme fonctions de répartition marginales.

1l existe une copule C' telle que

Flry) = C(Fx(x), Fy(y)), (v,y) € X x Y
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De plus, si Fx et Fy sont continues, alors C' est unique ; autrement ['unicité de C se réalise
sur limage de Fx et Fy. Le résultat mentionne également que si Fx et Fy sont des fonctions
de répartition marginales, alors F telle que définie est une fonction de répartition conjointe

de marges Fx et Fy.

La force d’une copule est donc de prendre deux fonctions de répartition marginales et d’en
créer une conjointe avec un lien de dépendance entre les variables. Le but de ce mémoire, on

le rappelle, est d’estimer des copules de valeurs extrémes.

Avant de voir les implications de ce théoreme, il pourrait intéresser le lecteur de se fami-
liariser davantage avec ce dernier a l’aide d’un exemple. (li-dessous est présenté des données
simulées selon différentes copules. La pertinence de cet exemple visuel se trouve dans le fait
que les distributions marginales de X et de Y sont identiques entre elles, mais aussi au tra-
vers des graphiques. L’exemple illustre pleinement la force des copules a altérer la dépendance

entre les variables aléatoires.

Logistique(r= 10, 6=0.95, ¢=0.75)
1.00 o 1.00 T -

Mixte(6=0.1, $=0)
o o T . . )

a5 .
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1.00 PR
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Figure 2.1. Données selon différentes forces de dépendance.

L’exemple ci-haut représente des données a valeurs extrémes simulées de distributions
marginales exponentielles. Le graphique est exprimé en fonction du vecteur de quantiles
(Fx(z;), Fy(y;)) des observations (x;,y;) et les copules utilisées sont respectivement de type
et de parametres : mizte (6 = 0.1,¢ = 0), logistique (0 = 0.9,¢ = 0.5,r = 2), logistique
(0 =0.95,¢ = 0.75,r = 10). Ces copules de valeurs extrémes sont explorées plus en détails
dans la seconde section du chapitre, mais [’exemple illustre parfaitement la pertinence des

copules.
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Avant de présenter les copules de valeurs extrémes, quelques propriétés, a étre présentées,

seront utiles dans la seconde section de ce chapitre.

D’abord, un corollaire direct du théoréeme de Sklar permettant de construire des copules. Il
suffit de définir inverse généralisé, F©=Y :[0,1) — [—00,00] , d’une fonction de répartition
F comme étant

FOD(u) = inf{z: F(z) >u}, ue€l0,1).

On obtient alors :

Corollaire 2.0.3. Soit F, Fx, Fy, C comme dans le théoréme de Sklar, F)((_l), F}(f_l) les

inverses généralisés de Fx et de Fy, alors

Cluw) = F(F)({l)(u), Fé”(v)), (uv) € [0,1)2

Si Fx et Fy sont continues, avec la connaissance des fonctions de répartition marginales et

conjointes, il est possible de construire des copules bivariées.

Sans avoir d’impact direct sur le restant du chapitre, ce corollaire peut servir d’outil de
compréhension et d’analyse intéressant au lecteur ; il peut servir pour explorer et analyser
théoriquement différents types et niveauzr de dépendance. Toutefois, pour revenir da la défi-
nition 2.0.1 des copules, dans le cas ou Fx et Fy sont continues, la condition 1 refléte le

principe qu’une fonction de répartition suit une distribution uniforme sur lintervalle [0,1];
Clu,1) = F(FY V(u), i (1)
= Fxy (FY ()| By V(1) B (P (1))
= Fx(F{ V() = u.
De méme,
C(u,0) = F<F<‘”<u> Fif”(O))
= Bix (B0 FE) () Fx (F P (w) = 0.

La condition 2 découle du fait que la fonction de répartition doit étre une fonction 2-

croissante, pour ne pas permettre de probabilités négatives.

Un cas particulier des copules est celui o les variables aléatoires étudiées sont indépen-

dantes. On rappellera que dans cette situation,

Fay) = Fy(z)Fy(y), (zy) € (X.)).
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Dans le contexte des copules, ceci implique
Cluw) = C(Fx(z), Fy(y)) = F(zy) = Fx(2)Fy(y) = uv.

Cette remarque sera utilisée dans le contexte des copules de valeurs extrémes.

Un aspect fort intéressant des copules est celui de leur invariance aux transformations
strictement croissantes sur le domaine des variables X et Y. Autrement dit, pour des trans-
formations qui n’affectent pas ’ordonnancement des valeurs de X et de Y, la copule des

variables transformées est identique a celle originale.
Bornes de Fréchet-Hoeffding

Les dernieres propriétés pertinentes pour notre probléme sont les bornes de la copule. En
1951 pour Fréchet et simultanément pour Hoeffding dans des journaux allemands, les auteurs

ont distinctement publié¢ le résultat suivant.

Théoréme 2.0.4 (Bornes de Fréchet-Hoeffding). Soit la copule C. On a
maz(u+v—1,0) < C(uw) < min(u,w), uw € [0,1]
En plus de borner explicitement la fonction copule, les bornes de Fréchet-Hoeffding sont d’in-

térét pour leur analogue a valeurs extrémes qui seront présentés au cours des pages suivantes.

Elles serviront de points de repére pour l'interprétation de la fonction de Pickands estimée.

Copules de valeurs extrémes

Suivant les sujets des premiers chapitres, les copules de valeurs extrémes se présentent
naturellement. D’abord, lorsqu’il est question de valeurs extrémes, un sens d’ordonnancement
est requis. Dans le contexte actuel, nous définissons 'ordonnancement des données Z; par
composante. C’est-a-dire :

Comme le précise Tawn (1988), la difficulté de cette statistique est qu’elle peut étre impossible

a observer sous la forme d’une donnée.

Définition 2.0.5. Une copule C est définie maz-stable si
Cluw) = C"(u" V"), uw € [0,1],
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pour tout v > 0.
La pertinence de cette définition se trouve dans la définition suivante :

Définition 2.0.6. Une copule C est dite copule de valeurs extrémes, s’il existe une copule
C* telle que
Cluw) = lim C*™(u™, vY™), uw € [0,1].

n—o0

En effet, les définitions précédentes se rejoignent par le théoreme suivant :

Théoreme 2.0.7. Une copule est maz-stable si et seulement si elle est une copule de valeurs

extrémes.

DEMONSTRATION. Par définition, une copule max-stable est une copule de valeurs extrémes.

Si C' est une copule de valeurs extrémes, alors il existe C* telle que
C"(uM" vt = lim O (uM™ 0™ = C(u,), uw € [0,1]

n—0o0

pour tout r>0. O

Suite a quoi, le résultat principal de cette section est présenté : le théoréme de Pickands.

Théoréme 2.0.8 (Pickands (1981)). Soit C, une copule maz-stable. Soit X et Y des variables

aléatoires et distribuées selon la copule C', alors on a

C(u,v) = exp { log(uv)A (li)ogg(izj))) }, u,v € [0,1],

ou A est la fonction de dépendance de la copule de valeurs extrémes C' - aussi appelée fonction

de Pickands. Pour que le résultat soit valide, A doit respecter les conditions suivantes :

max{1 —t,t} < A(t) <1, tel0,1],

A est conveze.

Démonstration. La démonstration vient de Nelsen (2006).
Comme C' est max-stable et X,Y sont des variables exponentielles de copule de sur-

vie O, les fonctions de survies marginales sont Fx(z) = e™®, Fy(y) = eV, x, y >

0.
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La distribution de survie conjointe est alors
F(r,y) =P(X >2,Y >9)=C(e™®, V).
Comme C est max-stable, on a
F(rz,ry) = C"(e™®,e7Y) = F"(x,y).
En choisissant A : [0,1] — [0,1] telle que
At) = —log C(e= 7Y et
qui implique C'(e~0, et) = exp{—A(t)}.

En posant (z,y) = (r(1 —t),rt) avec t € [0,1],7 >0, on a

F(ay)=F(r(1—t),rt) = F"((1—1),t)
= C"(e” 1Y et = exp{—rA(t)}
= exp{—(z + y)A(y/(z +v))}

En remarquant C'(u,v) = F(—log(u), —log(v)), on obtient finalement

C(u,v) = exp{log(uv)A(log(u)/ log(uv))}.

Pour que le c6té droit soit une copule, il est impératif d’avoir
A(0) = A(1) =1, max{l —¢,t} < A(t) <1

et A est convexe.

Le probleme d’identification de la copule C est alors équivalent au probleme d’identifica-
tion de la fonction A. Les estimateurs couverts dans le chapitre suivant sont conc¢us pour
estimer A. Il est également pertinent de remarquer que la fonction A est définie sur le do-

maine unidimensionnel [0,1]. La variable aléatoire log(U)/log(UV') est notée par Z.

Une remarque intéressante est que les bornes de Fréchet-Hoeffding pour C' se traduisent,
pour A, par max{l —t,t} < A(t) < 1. Pour le cas d’indépendance entre U et V,

A(z) = log(C(u,v))/log(uv) = log(uv)/log(uv) = 1, (u,v) € [0,1]%.

Pour le cas de dépendance parfaite, A(t) = maxft, 1-t/, t € [0,1]. Les bornes des fonctions de

Pickands servent alors de points de référence pour évaluer la dépendance entre les variables.
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Plusieurs mesures de dépendance s’y basent telles que la norme infinie ||1-A(t)||oo, la norme
euclidienne ||1-A(t)||2, la norme absolue ||1-A(t)|];.

Par Tawn (1988), les exemples les plus courants de copules de valeurs extrémes sont :

(1) Logistique : A(t) = (" (1 — )"+ 0"t")Y" + (0 — p)t +1 -6,
avec 0 < 0,0 <1,r > 1.

(2) Mixte : A(t) = ¢t +60t> — (0 + o)t + 1,
avec 0 < 0,0+ <1,0+20<1,0+3¢p>0

Note : le modeéle logistique est symétrique pour 8 = ¢ =1 et celui mixte [’est pour ¢ = 0.

L’exemple présenté plus tot dans le chapitre est repris pour illustrer les fonctions de
Pickands. Dans la Figure 2.2 ci-dessous, le graphique de gauche présente les données simulées
sutwant la fonction de Pickands illustrée dans le graphique de droite. Telle que présentée plus
haut, la borne supérieure de la fonction A représente l'indépendance des variables X et Y. La
fonction de Pickands longeant cette borne indique un niveau de dépendance plus faible que

celui présenté dans l’exemple de la Figure 2.3.

Mixte(6=0.1, $=0) Fonction de Pickands -- A
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Figure 2.2. Données avec faible dépendance (Copule mixte (6 = 0.1,¢ = 0)).

Dans ce second exemple de fonction de Pickands (Figure 2.3), le graphique de droite pré-
sente une fonction de Pickands longeant la borne inférieure suggérant une forte dépendance

entre les variables X et Y. Cette dépendance est observée dans le graphique de gauche de la
Figure 2.5.
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Figure 2.3. Données avec forte dépendance (Copule logistique (0 = 0.95,¢ = 0.75,r = 10)).

Comme le fait remarquer Ahmadabadi et Ucer (2017), les copules de valeurs extrémes
permettent une modélisation de la dépendance entre des wvariables associées positivement.

Cette remarque est causée par la nature de M, qui considére uniquement les maximums par

composantes.

Une seconde remarque intéressante porte sur les résultats suivants présentés dans Capéraa
et al. (1997) : deuxr des mesures d’association populaires, le coefficient de Kendall et de

Spearman, peuvent respectivement étre exprimées en fonction de la fonction de Pickands des

variables :
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Chapitre 3

Estimateurs et corrections non paramétriques

Dans ce chapitre, quelques méthodes d’estimation non paramétriques les plus courantes de
la fonction de Pickands sont présentées et quelques-unes sont davantage expliquées. Comme
le rapporte Tawn (1988), le choix non paramétrique est favorisé pour éviter les risques de

modélisation apportés par les approches paramétriques.

Les estimateurs et corrections présentés sont évalués sur un jeu de données de 30 ob-
servations. Ces observations, présentées dans la Figure 3.1, ont été générées a partir d’une

copule logistique(r = 1.5, 0 = 1, ¢ = 1) qui donne une fonction de Pickands symétrique.

Logistique(r= 1.5, 6=1, ¢=1)

LY Lt b
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0.75 . . L
-
-
-
> 0.50 = T
* L
» -
»
- - .
0.25
- L
.C
0.0
8.00 0.25 0.50 0.75 1.00
X

Figure 3.1. Jeu de données de 30 observations.



Estimateurs

Estimateur de Pickands (1981)

Le premier estimateur de la fonction de Pickands est celui portant le méme nom. L’esti-
mateur de Pickands, introduit en méme temps que la fonction de Pickands, a vu ses propriétés

asymptotiques étre démontrées trois ans plus tard par Deheuvels (1984).

L’estimateur de Pickands AL est donné par :

yeo Zn: (1), tel01].

Les réalisations sont

&(t) = min{ logtu) togl) L

ot u; = Fx(z;) et v; = Fy(y;), @ € {1,...,n}, avec (z;,y;) les observations associées au
vecteur aléatoire (X,Y) de marges Fx et Fy.

Comme le présente Ahmadabadi et Ucer (2017), Uobtention de cet estimateur est justifiée

comme suit. On pose

P(U < u,V < v) = C(up) = exp <10g(uv)A( log () ))

log(uwv)
S = —log(U)
T = —log(V),
£(t) = min(f, 1T_t>, t €10,1],

ot (U, V) est distribué selon la copule C, S et T suivent une distribution exponentielle de

parametre 1.

On obtient alors
P(E() > ) = P(U < e,V < e-170%) = O, e-(1-0%) = ¢=+0)
Ainsi la distribution de (t) est une Exponentielle(A(t)) et que E((t)) = 1/A(t), d’ou les-

timation par moyenne empirique des fz(t)

Gudendorf et Segers (2009) font remarquer que malgré l'inconvénient majeur de ne pas
respecter les critéres de bornes et de convexité des fonctions de Pickands, cet estimateur est
encore considéré lorsqu’il est question de comparer de nouveaur estimateurs de la fonction

de Pickands. Une des principales raisons vient de ses propriétés asymptotiques.
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La Figure 3.2 présente [’estimateur de Pickands évalué sur les données précédemment gé-
nérées. Comme le graphique lillustre, ’estimateur de Pickands ne respecte pas les contraintes

de bornes et de convexité imposées par la fonction de Pickands.

Estimateur de Pickands

1.0
5
i)
g 0.8 Estimateur Pickands
= — Bornes
u“’j — Fonction Pickands
0.6
0.4
0.00 0.25 0.50 0.75 1.00

Figure 3.2. Estimation par I'estimateur de Pickands.

Estimateur de Deheuvels (1991)

Pour corriger le biais de la fonction évaluée aux extremités de l'intervalle [0,1], Deheuvels
(1991) propose lestimateur alternatif AP suivant :
£ | ARSLIN 11—t

Xn: i(t) — *Zfi(l) - TZ@(O) +1, t€[0,1],

i=1 =1

avec éz(t) défini comme pour lestimateur précédent. Comme le précise Hall et Tajvidi (2000),
malgré cet ajustement apporté a l'estimateur de Pickands, ['estimateur de Deheuvels ne ga-
rantit pas la convexité et peut, de méme que pour son enveloppe convexe, se trouver hors des

bornes exigées des fonctions de Pickands.

La Figure 3.3 présente l'estimateur de Deheuvels évalué sur les données générées plus
tot. L’estimateur de Pickands est illustré a titre comparatif. Sans respecter les contraintes de

bornes et de convexité, l’estimateur corrige le biais de ['estimateur de Pickands évalué aux

extrémités.
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Estimateur de Deheuvels
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Figure 3.3. Estimation par I'estimateur de Deheuvels.

Estimateur de Capérada, Fougéres et Genest (1997)

L’estimateur présenté ici a été publié en promouvant sa capacité d’estimation pour des
échantillons de petites tailles, comparativement a celles des estimateurs présentés jusqu’a
maintenant. Dans Uarticle de Capérad et al. (1997), les auteurs comparent la performance
de leur estimateur avec celle des estimateurs précédents en se basant sur des simulations

numériques de tailles d’échantillon n = 100.

L’estimateur de CFG, ASFY | est défini comme suit. Soit

i 1/n
Q; = { [T 2w /(1= Z<k>))} :
k=1
z; = log(u;) /log(uv;) et zu) = k¢ statistique d’ordre des z;.

On définit alors

(1 _ t)Q}l—P(t) S 0<t< 2(1)»
AZTE) = 101 = ) QLR i 2y <1< 2y,
tQ;p(t) St 2y St < 1.

Les z; sont distincts et 0 < p(t) < 1. Les auteurs suggéerent p(t) = 1-t.
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La justification de [’estimateur est la suivante. Pour Z = log(U)/log(UV') avec (U,V)
distribué selon la copule C', de fonction de Pickands A, on cherche a calculer

H(z)=P(Z < z2).

Ceci est obtenu en calculant P(U < u,Z < z) =P(U <u,V < U

:))

Pour ce faire, il faut d’abord savoir :

;uF(u v) = aaue:z;p{log(uv)A( log(u) )}

log(uv)
- {log(uv)A(zloi]g(%)) } 5‘4(1{;9(23)%
gt ()
oo S () ket

- {log w””(zﬁ%) }i [A<zloogg(%> A (zlo(;g((u?)) <1 N ziogg(%@)) ﬂ ‘

On peut ainsi calculer

tl/z—1
PU<u,Z<2)=PU<uV / / aauaauF (t, s)dsdt

ou
= /Ou 1exp{lag(tl/z)A(zol;)iqt(li)z) ) } [A<lol;(gt(1t/)z) ) !
 (agtr) (1= gty |

= [FeAerta i) + A - 2)

_ uA<Z>/ZA(Zz> [A@) A - z)]

_ AR/ {z n Mu - z)z]

Ce qui donne H(z) =P(U<1,Z<z)=z+ il((j))(l —2)z.

En résolvant le systéeme d’équations différentielles pour A, on obtient
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= A(t) = exp{ /Ot H(U)_udu},

u(l —u)

puisque A(0) =1, par définition de la fonction de Pickands. De méme, on peut obtenir

Alt) = exp{ - /t1 mdu}.

L’estimateur présenté se base sur ces formes de A. En effet, les auteurs proposent alors deux
estimateurs non paramétriques :

A1) :exp{ /Ot Imdu} et AL(H) :e:vp{ —/t1 %‘du},

ou H, est la fonction de répartition empirique des z;.

L’estimateur de CFG combine ces deux estimateurs de sorte que

log A;"(t) = p(t) log A (t) + (1 — p(t)) log A, ().

Des calculs, présentés dans l'annexe 2, prouvent [’équivalence de cette forme de l’estimateur
avec celle présentée plus tot.

Il a été mentionné que rien ne garantit le respect des bornes pour ASTC. En fait, ’esti-

mateur ne les respecte pas presque surement.

Soit n la taille de Uéchantillon, t € [0,21)] et t' € [2n),1] 0t zy) est la i¢ statistique d’ordre
des z;, 5 € {1,2,....,n}, on a

ACFG() = (1— QL <1 —¢

QP <l s _Ew

<1
=1 L= 2
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et
AFG () = 1 Q0

> 1.

SQ,>14]] &
k:ll

— Z(k)

Comme P(HZ1 lz““) = 1> = 0 pour des z; indépendants, l'estimateur de CFG ne respecte

TE(k)
pas les bornes, presque sturement.

L’estimateur de CFG a la propriété d’étre consistant et asymptotiquement normal. Par
simulations, Gudendorf et Segers (2009) indiquent que cet estimateur est plus performant

que ceux de Pickands, de Deheuvels et de Hall-Tajvidsi.

De plus, par Segers (2004), Uestimateur de CFG s’écrit dans une expression simple qui fait

intervenir la forme des estimateurs précédents. On a

1) <~ 1—p(t) & 2
log(ASTE(t) —Zlo (&(t) +p£l)2&(0) —l—f()Z&;(l).
i=1 i=1
Ou encore, puisque la constante d’Euler v = 0.577.. = —E(log(X)), avec X une variable

aléatoire exponentielle de paramétre 1 et &(t) est de loi exponentielle de paramétre A(t), une

approzimation de l’estimateur de CFG devient

log(ATC(t) = — Zlog &(t) —v, teloll.

La Figure 3.4 présente l'estimateur de CFG évalué sur les données générées plus tot.
Les estimateurs précédents sont illustrés a titre comparatif. L’estimateur ne respecte pas les
contraintes de bornes et de convexité imposées, mais performe mieux pour des échantillons de
petites tailles que les précédents, selon Capéraa et al. (1997) et Gudendorf et Segers (2009).

Estimateur de Hall-Tajvidi (2000)

L’estimateur de Hall et Tajvidi (2000) est le seul, parmi ceux présentés jusqu’a mainte-

nant, a respecter la contrainte de borne inférieure de la fonction de Pickands.

1l est défini comme suit. Soit

(0 :”“”{2 18—it}’
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Estimateur de CFG
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Figure 3.4. Estimation par l'estimateur de CFG.

lOQ(Uz‘)
% 1 log(vi) ’

lOQ(Uz‘)
T 1w

— et s =
n ¢:1ZOQ(Ui)

Uestimateur de Hall-Tajvidi AT est donné par

1 1M -
AHT(f) — g;fz‘(t), t € [0,1].

n

Une remarque intéressante par Hall et Tajvidi (2000) est la distinction entre leur estimateur
et celui de Deheuvels : «Les deux étant des modifications de [’estimateur de Pickands, l’es-
timateur de Deheuvels propose un ajustement additif pour le biais tandis que celui présenté
a l'instant propose un ajustement multiplicatif qui a pour effet de normaliser les moments

marginauz a la forme adéquatey.

Gudendorf et Segers (2009) précisent que parmi les estimateurs de Pickands, de Deheuvels
et de Hall-Tajvidi, celui de Hall-Tajvidi a la plus petite variance asymptotique.

La Figure 3.5 présente 'estimateur de Hall-Tajvidi évalué sur les données générées plus
tot. Les estimateurs précédents sont illustrés a titre comparatif. L’estimateur de Hall-Tajvidi
est le seul a respecter les contraintes de bornes imposées, sans toutefois respecter celle de

convexite.

44



Estimateur de Hall-Tajvidi
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Figure 3.5. Estimation par 'estimateur de Hall-Tajvidi.

Correction d’estimateurs

Dans la seconde partie de ce chapitre, on présente des corrections d’estimateurs de la
fonction de Pickands. C’est-a-dire des techniques a étre appliquées sur un estimateur pour

lui permettre de respecter les contraintes de la fonction de Pickands.

Selon Fils-Villetard et al. (2008), deuz principales approches sont généralement emprun-
tées. La plus évidente est de forcer l'estimateur a demeurer a lintérieur des bornes et de
prendre son plus grand minorant convexe, tandis que la seconde est d’approcher l’estimateur
obtenu a l'aide d’une spline définie dans [’espace des fonctions de Pickands A. Ces auteurs
mentionnent le résultat pertinent que pour chacune de ces approches, l’estimateur corrigé est

consistant si l'estimateur initial [’est.
Voici un exemple pour chacune de ces approches.
Plus grand minorant convexe

L’idée de ce type de correction est de prendre le plus grand minorant de [’estimateur
initial qui est élément de A. Un exemple de cette approche qui est similaire a celle qui sera

présentée dans la correction proposée est de définir
A*(t) = min(1, max(A(t),1 — t,t)), t € [0,1]

ou fl(t) est l’estimateur initial de la fonction de Pickands. La correction du plus grand mi-
norant convexe peut étre approchée en prenant l’enveloppe convexe de /Al*(t) sur un ensemble

fini de points.
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La définition de fl*(t) assure le respect de la contrainte de bornes, tandis que [’enveloppe

convexe garantit la convexité du nouvel estimateur.

La Figure 3.6 présente la correction du plus grand minorant convexe (PGMC) appliquée
aur estimateurs de Pickands et de CFG. Pour obtenir les plus grands minorants convezxes,
les enveloppes convexes des estimateurs ont €té calculées en t = {0; 0,01; 0,02; ..;0,99;
1}. Les nouveaux estimateurs obtenus respectent les contraintes imposées par les fonctions
de Pickands.

Correction du plus grand Minorant Convexe

Estimateur Pickands
— Plus grand minorant - Pickands
— Estimateur CFG
Plus grand minorant - CFG
— Bornes
— Fonction Pickands

Estimateurs
o
P

0.6

0'C‘)t.OO 0.25 0.50 0.75 1.00

Figure 3.6. Exemple de correction par le PGMC.

Spline définie dans A

L’idée de ce type de correction est d’approcher l'estimateur initial A de la fonction de
Pickands par une spline dans A. Plusieurs méthodes existent pour ce faire, une des plus
populaires est celle présentée dans Hall et Tajvidi (2000) a l'aide d’une spline de degrés 3 ou
plus.

L’exemple utilisé est la correction de Fils-Villetard et al. (2008). L’idée de la correction
FGS est de projeter l’estimateur initial dans ’espace des fonctions de Pickands, A, de sorte
a minimiser la distance quadratique entre [’estimateur et sa projection dans A. N’ayant pas
une forme explicite pour la projection optimale, les auteurs proposent [’algorithme suivant
permettant d’obtenir une spline linéaire approvimative. Les auteurs précisent que les avan-

tages d’autres types de splines sont négligeables.
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La spline linéaire est composée de m + 1 segments, ou m est un hyperparametre que doit
fournir l'usager. Les auteurs mentionnent que m = 20 est généralement suffisant.

Le lecteur est encouragé a consulter l'article de Fils-Villetard et al. (2008) pour la justification

théorique. Seul l’algorithme est présenté ici.
Algorithme de la correction FGS :

(1) Estimer la fonction de Pickands A par un estimateur initial A.
(2) Chotsir le nombre de segments, m+1, de la spline linéaire pour approcher A dans A.

(3) Définir les constantes du probléme

21 0
4 1 0
A 1 01 4 1 0
m+1 — 67m
0 1 4
0 0 1 2
et
3}n(;fi(o) +A<2}n>> sii=0
b; = %(A(@;}) +A<g’1> +21<2;;1>> sii=1,...,m~—1
%L(A(Q’;;l) + ;fl(l)) sii=m
(4) Trowver \ qui minimise A\TAX —2\Tb, X\ € A,, C R™ fermé et convere,
s.q.
A=Ap=1
1=\ <o

Aic1 =20+ X1 >0

1 _>\m—1 S

1
m
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De sorte que AFYES = S Nihi, avec hiy qui est l'unique fonction linéaire par morceaux a m
neeuds telle que hiy,(7/m) = 8;(j). Autrement dit, A¥%S est la fonction qui relie linéairement

les points (%, Ai)i=0.1,...m-
Un inconvénient de l’algorithme présenté est la nécessité de fournir I’hyperparameétre m.

La Figure 3.7 illustre la correction FGS appliquée a [’estimateur de Pickands et de CFG
pour les données présentées plus tot. L’estimateur de Pickands initial est considérablement
corrigé. L’estimateur de CFG initial a une forme pres de celle souhaitée, la correction appor-
tée est légere. Les nouveaur estimateurs obtenus respectent les bornes et la convexité deman-
dées. Contrairement a la correction du PGMC, la correction par spline permet l’existence de
to tel que pour Uestimateur corrigé A*, A*(ty) > A(ty) (pour to tel que A(ty) respecte les

bornes de la fonction de Pickands).

Correction de FGS

— Estimateur CFG
Correction de FGS (CFG)
Estimateur Pickands
— Correction de FGS (Pickands)
— Bornes
— Fonction Pickands

Estimateurs
o
®

0.6

0'8.00 0.25 0.50 0.75 1.00

Figure 3.7. Correction d’estimateurs par FGS.

Conclusion

Les estimateurs présentés ci-haut ainsi que la correction FGS appliquée sur l’estimateur
de CFG seront repris lors de simulations dans le prochain chapitre. L’estimateur de CFG sert
également de point de départ pour le développement de la correction convexe et de l’estimateur

bayésien qui forment le sujet de ce mémoire.
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Chapitre 4

Correction convexe et estimateur bayésien

Dans ce dernier chapitre, la correction d’estimateurs et [’estimateur bayésien proposés sont
développés. Pour chacun, les prérequis théoriques sont présentés, suivi de la correction ou de
l’estimateur, puis quelques résultats et une application sur les données générées au chapitre 3.
Suivant la présentation des deux contributions de ce mémoire, elles sont évaluées et comparées
a quelques estimateurs et corrections du chapitre 3 sur un ensemble de données générées a
partir de 18 distributions de copules de valeurs extrémes. L’évaluation est basée sur [’erreur
quadratique moyenne entre l’estimateur obtenu et la fonction de Pickands qui a servi a

générer les données.

Correction par centralisation et enveloppe convexe

Comme son nom le suggere, la correction proposée est divisée en deux étapes. Une pre-
miere de centralisation, puis une seconde d’obtention de [’enveloppe convexe de [’estimateur.
La centralisation des données est une idée originale. Elle est basée sur la propriété développée
ci-bas. La correction est congue pour les estimateurs qui sont une fonction des observations

z;. L’estimateur de CFG en est un exemple.

Propriété de la variable aléatoire Z

On définit la variable aléatoire Z = log(U) / log(UV), avec (U, V) distribué selon la copule

C. Le lemme suivant permet d’obtenir la propriété de Z qui justifie la correction proposée.

Lemme 4.0.1. Soit X une variable aléatoire dont [’espérance existe et H sa fonction de

répartition, on obtient

E(X) :/Ooo(l—H(t))dt—/O H(t)dt.

—0o0



Démonstration. En effet,

Posons Y = log (1ZZ> Ldy=—L- ona

z(1-2)’

]P’(ng):IP’(Z< < ):H( < )::G(y).

“14ev 1+ev
Soit A la fonction de Pickands qui permet de générer Z et H la fonction de répartition de Z,

on rappelle que Capéraa et al. (1997) ont montré

Alt) = exp{ /Ot i[((f)_;;dz} — exp{ . /tl Z(lz)__z;dz}.

Ceci donne,

log A(1/2) = /Ol/zfj((f)__z)z - /01/2 zé[(_z>z)dz+zog(1/2)
et
log A(1/2) = — /I; (H(2) ;(11)__2)(2 “Yg. - /1; g(_lil(;)))dz +1og(1/2).
P (1= H(2)) V2 H(z)
:>/1/2 z2(1—2z) dz_/o z(l—z)dz:o
= /000(1 — G(y))dy — /_OOO G(y)dy = E(Y) =0, par le lemme.

Ainsi, E(Y) =0 = E(log (I—ZZ)> Cette propriété de Y — et de Z — est centrale dans notre

proposition de correction.

Enveloppe convexe

La deuzieme partie de notre correction se base sur le concept de [’enveloppe convezre d’une
fonction — ou d’un estimateur dans notre cas. On doit alors proprement définir [’enveloppe

conveze et donner des méthodes pour l’approcher numériquement.
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Définition 4.0.2. Soit E un espace et A un sous-ensemble de E, on définit [’enveloppe

convexe de A comme l'intersection de tous les sous-ensembles convexes de F qui contiennent

A.

Une propriété de ’enveloppe convexe est d’étre le plus petit ensemble convexe de E qui
contient A. Cette propriété est fort désirable puisqu’elle nous permet d’obtenir le plus grand

minorant convexe d’un estimateur.

Pour un estimateur quelconque de la fonction de Pickands, il faut employer une approxi-
mation de son enveloppe convexe parce qu’on ne peut pas obtenir la fonction explicite. Plu-
sieurs algorithmes ezistent pour obtenir cette approximation : Gift Wrapping (1973), Quick-
hull (1977), Chan’s algorithm (1996).

Correction par centralisation et enveloppe convexe

Soit un estimateur initial de la fonction de Pickands A, on définit

A*(t) = min(1, max(A(t),1 — t,1))), t e [0,1].
La correction de I’estimateur de la fonction de Pickands consiste a obtenir [’estimateur A
basé les observations z; transformées -notées z:- et a prendre l’enveloppe convexe de A* pour

garantir la convexité.

Soit les observations z;, nous centrons les observations y; = log <1fiz_),
(2

de telle sorte que

evi
j— i — U et — —_—,
vi =vi— 9 P
ot y est la moyenne empirique des y;, et i = {1,2,...,n}. Nous rappelons que la raison de

la centralisation des y; est le résultat du lemme 4.1 qui mentionne E(Y') = 0.

Pour lestimateur de CFG, l'action de centraliser les observations z; vient garantir le
respect des bornes inférieures de la fonction de Pickands. En effet, on peut montrer que
A%(t) et AL(t) respectent les bornes inférieures sur [0,1/2] et [1/2,1] respectivement et que
A% = AL

Effectivement, on a sous cette égalité

log(AT74 () = p(t) log(A(t)) + (1 — p(t)) log(A, (1)) = log(A7 (1)) = log(A, (1))
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ou A% et AL respectent les bornes sur [0,1/2] et [1/2,1] respectivement, ce qui implique que

ACFG respecte les bornes sur tout son domaine.

Montrons d’abord que A%(t) et AL(t) respectent les bornes sur [0,1/2] et [1/2,1] respective-

ment.

Pour 0 <t < 1, H une fonction de répartition quelconque a domaine [0,1], A°(t) et A'(t)

étant définies telles que
A(t) = exp{ /Ot mdu} et Al(t) = e:z'p{ - /tl mdu}

Ceci implique

logAO(t):/Otmdu:/ot&du—/ot (1iu)du

t H(u)
— [ 22 v log(1 — ¢
/ (1_u)u+ og( )
= A°t)>1—t, car Hu) >0 et 0 <u<t <1

De méme, on a

logAl(t):—/t1 H(u)_udu:/t1 U_H<u)du:/t1 (1_H(u))_(1_u)du

(1 —u) u(l —u) u(l —u)
11
_/ l—u t Edu
—/ 1—u du+1og()

= A'(t) > t.

Montrons maintenant que AY = AL,

D’abord, on a
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Estimateur CFG corrigé

— Estimateur CFG

— Estimateur CFG corrigé
— Bornes

— Fonction Pickands

Estimateur

0.00 0.25 0.50 0.75 1.00

Figure 4.1. Estimateur de CFG corrigé.

Ceci implique

n *
=
_ i
=1 )
BN
Sl =z 1= 2
=1 1 =541 7
— 2 Z;
ell—=1 ——
* — ¥
=1~ izj41 L — 2

Donc, par leur forme développée dans l'annexe 2,

‘ A ‘ . n *
A?L(t) _ tj/”(l _ t)l—a/n H 7*21 — t]/"(l _ t)l—y/n H Ziz* — A}L(t)a
i=1 i iz 1 — 2

pour t € 2y, 2(j+1)] et n € {1,2,...,n}. Pourt € [0,zq)] et t € [zm), 1], l'égalité est directe.

L’enveloppe conveze sur l’estimateur de CFG évalué sur les z; permet alors de respecter les

contraintes de borne supérieure et de convexité.

La correction de l’estimateur de CFG sur les données simulées au chapitre 3 est illustrée

dans la Figure 4.1. L’estimateur initial est illustré a titre comparatif.
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Estimateur bayésien

On présente maintenant notre estimateur bayésien de la fonction de Pickands qui est
aussi basé sur une idée originale. Pour comprendre son fonctionnement, le lecteur doit étre
familier avec le contexte bayésien et avec les processus de Dirichlet. Les pages suivantes

contiennent le nécessaire a la compréhension de l’estimateur proposé.

Contexte bayésien

La statistique est majoritairement présentée a l’aide de [’approche classique. C’est-a-dire
que nous présentons un modéle générateur d’observations qui requiert des paramétres fizes.
Ces paramétres sont généralement notés @ € RP. A laide d’observations recueillies et du
modele, on peut inférérer sur la valeur de 6. L’estimation de 6 est alors entierement basée

sur l’échantillon, noté x.

La différence de 'approche bayésienne se trouve dans l'interprétation du paramétre 6.
A contrario du cas classique, nous supposons que 0 est la réalisation d’une variable aléa-
toire ©. La wvariable © suit une distribution que doit définir le(la) statisticien(ne) ou
Uexpérimentateur(-trice) avant d’observer xz. Cette distribution est appelée a priori et est
notée m. Elle doit capturer, du mieux possible, les croyances de 'expérimentateur(-trice) sur
0. L’approche bayésienne laisse place a un peu de subjectivité qui peut engendrer des contro-

VETSES.

La méthode bayésienne va alors comme suit. Puisqu’on suppose 0 inconnu et aléatoire,
on définit

7(0) : La distribution a priori de 6, qui capture les croyances sur le

parameétre avant [’observation de x.

f(z]0) : Le modeéle qui permet de générer les observations et qui dépend
du parameétre 0. C’est a l'aide de ce modéle qu’on peut tirer de

l"information sur 6 a partir de x.
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w(0|x) : La distribution a posteriori de 0 suivant [’observation de x. Elle
représente la mise-d-jour de nos croyances sur 6 suivant |’expé-

rience.

La distribution a posteriori est obtenue par une application du théoreme de Bayes.

f0,z) _ [f(z]0)m(9)
f(z) f(z)
o< f(z]0)m(6)

m(0lz) =

flz) = [o f(x|0)m(0)dl est la densité marginale de la variable aléatoire X. FElle peut étre
ignorée lors du calcul de la distribution a posteriori puisqu’elle ne dépend pas de 6 et peut

facilement étre retrouvée.

L’inférence bayésienne de 0 est basée sur la distribution a posteriori. Les estimateurs les

plus courants sont :
e E(0|x) : La moyenne a posteriori.

e argmax 7(0|x) : Le mode a posteriori.
e

o 0y tel que P(0 < Oylz) = P(0 > bhlz) = 1/2 : La médiane a posteriori.

Dans certains cas, la distribution a posteriori obtenue n’est pas familiere ou peut étre
impossible a manipuler. Si l'on souhaite faire numériqguement l’estimation d’une fonction de
0, on peut recourir a des simulations numériques pour estimer les valeurs qui nous intéresse
par la loi forte des grands nombres, par exemple. Quelques méthodes pour générer des obser-

vations de telles distributions sont les algorithmes de Monte-Carlo par chaines de Markov
(MCMC).

Nous venons de présenter l’approche bayésienne paramétrique, c¢’est-a-dire pour une fa-
mille de modéles connue. Dans le contexte de l’estimation de la fonction de Pickands, nous
désirons faire de l’estimation non paramétrique. L’idée de [’estimation bayésienne non par-

métrique est la suivante.
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On pose une mesure de probabilité a priori m sur F — l’ensemble des distributions possibles
de X. Sans nécessairement avoir de forme explicite pour w, savoir comment générer aléa-
toirement de 7 est suffisant. Cette distribution a priori permet de modéliser les croyances
a priori de l'expérimentateur(-trice) sur la forme du modéle qu’on souhaite estimer. Depuis
son introduction par Ferguson (1973), les processus de Dirichlet sont le choiz de w le plus

populaire.

Processus de Dirichlet

Seule 'intuition et les propriétés pertinentes des processus de Dirichlet sont présentées
ici. Le lecteur s’intéressant a leur développement théorique peut se référer a Ghosh et Rama-
moorthi. (2003).

On définit d’abord X, l'ensemble des valeurs que peut prendre la wvariable aléatoire X
et M(X), 'ensemble des mesures de probabilités sur X. On cherche ensuite d définir une

mesure de probabilité m sur M(X).

Voici une série d’exemples tirés de Ghosh et Ramamoorthi. (2003) qui visent a faciliter la

compréhension du concept de mesure de probabilité sur M(X).

Exemple : Soit X = {1,2}.

On a

M(X) = {(p1,p2) : p1,p2 >0 et py +pa = 1},
ot M(X) devient alors 'ensemble des valeurs que peut prendre py, puisque ps = 1 — p;.
Une mesure de probabilité sur M(X) est alors une distribution pour p;. Un exemple est la

distribution béta.

Exemple : On peut généraliser 'exemple précédent a X = {1,2,...,n}.

On a .
M(X) ={(p1,p2, - Pnc1) :pi =0 pour 1 <i<n—1et Y p <1}

i=1

Une mesure de probabilité m sur M(X) est alors une distribution pour le wvecteur
(p1,P2y- -+, Pn—1). Un exemple est la généralisation multivariée des lois béta : la loi de
Dirichlet.
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Un processus de Dirichlet, ce qui nous intéresse, est une généralisation des exemples
précédents pour X = R. Les processus de Dirichlet sont utiles pour modéliser nos croyances

sur la distribution de X, une variable aléatoire a valeur réelle. Ils requierent deux parametres :

(1) Fy : La meilleure estimation subjective a priori de la fonction de répartition de X.

(2) o : Le niveau d’importance qu’on attribue a Fy. Plus « est grand, plus le processus

de Dirichlet a priori est concentré autour de Fy.

Comme pour le cas paramétrique, les observations de x permettent de mettre a jour les
croyances sur la distribution de X. Dans le contexte ou ['on s’intéresse a [’estimation d’une

fonction de répartition, on a le résultat suivant pour la distribution a posteriori :

Théoreme 4.0.3. Soit X1, Xs,..., X, des variables aléatoires i.i.d. de fonction de réparti-
tion F et w un processus de Dirichlet pour la distribution a priori de parametres Fy et a —

notée Dir(a, Fy), on a que la distribution a posteriori de F est
Flz ~ Dir(a+n, F;)

ou by = - F, + S Fy et F, est la fonction de répartition empirique des x;. La moyenne

a posteriori est .

Dans le contexte des copules de valeurs extrémes, nous utilisons ce résultat pour estimer la

fonction de répartition des z} qui permet d’obtenir une estimation de la fonction de Pickands.

Estimateur bayésien

L’estimateur que nous proposons est le suivant

A, (t) = exp{ /Otﬁ%)_udu}, te 0]

u(l —u)
ou H est l’espérance a posteriori d'un processus de Dirichlet de parameétres :
FO = F, a = b,

ot F est une fonction de répartition béta(o = a, B = a) a priori pour les observations z; et
avec 1 < a € R, b € RY. Nous appliquons ensuite la correction proposée dans la premiére

section de ce chapitre pour obtenir la convexité.

57



Pour le paramétre Fy du processus de Dirichlet, on peut choisir n’importe quelle fonction
de répartition H telle que
t _
At) = ea:p{/o Mdu}, t € [0,1]
ou A est une fonction de Pickands. Le choix de la fonction de répartition a priori d’une
loi béta(a,a) est arbitraire, mais permet de générer une infinité de fonctions de Pickands
symétriques. Le choix a priori de H est équivalent a choisir une fonction de Pickands a

PTLOTI.

La Figure 4.2 illustre des fonctions de Pickands définies respectivement par des fonctions
de répartition de lois béta(a,a) avec a = {1,1;1,2;1,4:1,6;2;3}. Ces fonctions sont utiles
lorsque expérimentateur(-trice) posséde des croyances a priori sur le niveau de dépendance

entre les données.

Fonctions de Pickands a priori

0.6

'0.00 0.25 0.50 0.75 1.00

Figure 4.2. Fonctions de Pickands a priori.

La pertinence du contexte bayésien dans l’estimation d’une fonction de Pickands est due
a la connaissance a priori que la fonction de répartition H de Z doit étre convexe sur une

premiere partie de ['intervalle [0,1] et concave sur la seconde. Autrement dit, il existe un zg
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tel que
H(z)—2<0 siz<z
H(z)—2>0 siz> z.

En effet, on a
H(t) —t

abammztﬂ_ﬂ.

ot
Par la converxité de A, il existe un tq tel que
At) <0 si0<t<t
At)>0 sitg<t<lL.
Ainst,
Ht)—t<0 sit<t,
Ht)—t>0 sit>t.
Nous détenons ainsi des croyances a priori sur H que nous pouvons fournir a ['aide du

contexte bayésien.

De plus, le résultat suivant garantit que l’estimateur bayésien respecte la borne inférieure
des fonctions de Pickands. En effet, elle montre que
tH(u) —u VH*(u) —u
a0 = e [ Oy VRO L
() exp{ o u(l—u) u} exp{ t o u(l—u) “ ()

lorsque Uestimateur est évalué sur les z}. On le rappelle, A° et Al respectent la borne infé-
rieure sur [0,1/2] et [1/2,1] respectivement. L’égalité de A et Al implique le respect de la

borne inférieure sur tout le domaine.

Proposition 4.0.4. Comme la fonction répartition d’une loi béta(o = a, 3 = a) permet de
créer une fonction de Pickands et la fonction de répartition échantillonale des z} permet AY

= AL pour lestimateur de CFG, on a pour
H(2) = a/nF(2) + (n — a)/nFy(2),

avec F la fonction de répartition de loi béta(a,a) et F,, la fonction de répartition empirique

des z; :
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exp{ /Ot H(u) — udu} _ exp{ /ot a/nF(u) + (n — a)/nF,(u) — udu}

u(l —u) u(l —u)
R e e

Un premier avantage de l’estimateur bayésien est qu’il respecte les bornes de la fonction
de Pickands. Les autres principauxr avantages sont ceux que l’on trouve généralement dans
l’approche bayésienne. C’est-a-dire ['usage de connaissances a priori sur le phénomeéne
observé et la consistance de [’estimateur lorsqu’on détient un grand nombre d’observations.

En effet,
t H(u) —u ta/nF(u)+ (n—a)/nF,(u) —u
/0 mdu :/0 u(l — ) du
- [ e B
- b - e 5
t H(u) —u
= [ i e = ToB(A(),

Avec H, la vraie fonction de répartition de Z.

L’avant-derniére égalité est due au fait que l'estimateur de CFG est consistant. Cela rend

l’estimateur proposé consistant.

La Figure 4.3 illustre des estimateurs bayésiens de différentes distributions a priori éva-
luées sur les 30 domnées générées au chapitre 3. Les processus de Dirichlet a priori ont
comme parameétres des fonctions de répartition béta(a = 1,8 = 1), béta(a = 2,5 = 2),
béta(a = 3,0 = 3) et ont tous le parameétre o = 5.

Sitmulations

Pour faire I’évaluation de la correction et de l’estimateur proposés, leur erreur quadratique

moyenne est comparée a celle des estimateurs de CFG, de Hall-Tajvidi et de la correction
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Estimateur bayésien

— Estimateur bayésien (a = 1)

— Estimateur bayésien (a = 2)
Estimateur bayésien (a = 3)

— Bornes

— Fonction Pickands

Estimateur

0.00 0.25 0.50 0.75 1.00

Figure 4.3. Estimation par I'estimateur bayésien.

FGS sur Uestimateur de CFG (m = 20), tous présentés au chapitre 3. La comparaison s’ef-
fectue a l'aide d’échantillons de tailles n = 30 et n = 100 générés a partir de 18 distributions
de copules de valeurs extrémes. Pour chacune des distributions et tailles d’échantillons, 1000

échantillons sont générés pour mesurer les erreurs d’estimation.

Le Tableau 4.1 présente les distributions utilisées dans la simulation.

Les Figure 4.4 et Figure 4.5 illustrent les 18 fonctions de Pickands des copules de valeurs

extrémes utilisées pour générer les données.

Le Tableau 4.2 présente les erreurs quadratiques moyennes des estimateurs et des correc-
tions appliqués sur les échantillons générés, selon la taille de [’échantillon et la distribution.
Pour utiliser la flexibilité de la correction proposée, la correction de FGS appliquée sur les
données centrées s’y trouve également sous le nom de correction FGSc. Sur cet ensemble de

données simulées, la centralisation donne un estimateur équivalent.

Comme le montre le Tableau 4.2, I’estimateur bayésien proposé a les erreurs quadratiques
moyennes les plus faibles. La correction proposée appliquée sur l'estimateur de CFG réduit
l’erreur moyenne de [’estimateur. L’avantage de la correction proposée comparativement a
celle de FGS est de ne pas nécessiter d’hyperparameétre et a un temps de calcul moyen environ

15 fois plus rapide (0,006 seconde en moyenne par évaluation comparativement da 0,091).
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Tableau 4.1. Description des distributions a partir desquelles les échantillons de la simu-
lation ont étées générées.

Distribution
Logistique T 0 )
1.5 1 1
1.5 09 0.5
2 1 1
2 09 05
2 0.7 0.95
3 1 1
3 09 05
3.25 0.75 0.95
10 0.75 0.95
Mixte 0 0]
- 0.9 0
- 0.1 0
- 0.5 0
- 0.1 025
- 0.5 02
- 0.1 04
- 1 -0.25
- 0.5 -0.1
- 1.25 -0.3

Fonctions de Pickands logistiques

0.00 0.25 0.50 0.75 1.00

Figure 4.4. Copules logistiques utilisées.
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Fonctions de Pickands mixtes

0.00 0.25 0.50 0.75 1.00

Figure 4.5. Copules mixtes utilisées.
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Tableau 4.2. Description des erreurs quadratiques moyennes des estimateurs et des correc-
tions appliqués sur les échantillons générés, selon la taille de 1’échantillon.

Estimateurs n = 30 n = 100

Logistique

CFG 2,28 + 4,37 0,72+ 1,12
Hall-Tajvidi 2,78 + 4,92 0,83 £ 1,22
CFG avec correction FGS 1,55 £ 2,23 0,60 + 0,87
CFG avec correction proposée 2,04 + 2,84 0,72 + 1,0/
CFG avec correction FGSc 1,61 £ 2,17 0,62 + 0,87
Estimateur bayésien (a = 3) 1,36 + 1,78 0,57 £ 0,76
Estimateur bayésien (a = 1.6) 1,40 £ 1,86 0,61 + 0,81
Estimateur bayésien (a = 1.2) 1,57+ 2,06 0,65 + 0,86
Mixte

CFG 4,01 £ 7,68 1,32+ 1,94
Hall-Tajvidi 5,70 £ 9,28 1,7/ + 2,39
CFG avec correction FGS 2,562 + 3,04 0,93 + 1,2/
CFG avec correction proposée 3,02+ 3,532 1,04 + 1,34
CFG avec correction FGSc 2,61 &+ 3,07 0,96 + 1,24
Estimateur bayésien (a = 3) 2,62+ 3,18 0,94 + 1,24
Estimateur bayésien (a = 1.6) 2,22+ 2,75 0,90 + 1,20
Estimateur bayésien (a = 1.2) 2,07+ 2,58 0,89 + 1,19
Total

CFG 3,39 + 6,02 1,02+ 1,53
Hall-Tajvidi 4,21 £ 7,10 1,28 + 1,80
CFG avec correction FGS 2,03+ 2,63 0,78 £ 1,05
CFG avec correction proposée 2,53 + 3,08 0,88 + 1,19
CFG avec correction FGSc 2,11 + 2,62 0,79 £ 1,05
FEstimateur bayésien (a = 3) 1,99 + 2,48 0,75 £ 1,00
Estimateur bayésien (a = 1.6) 1,81 £ 2,30 0,75 + 1,01
Estimateur bayésien (a = 1.2) 1,82+ 2,32 0,77 + 1,02

Les mesures sont présentées sous forme de moyenne + écart-type.

Les valeurs de la table sont de Uordre 1073.
Correction de FGS sur les données centrées

FGSe :
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Conclusion

Nous avons été confrontés au probleme d’estimation de la fonction de Pickands associée a
une copule de valeurs extrémes. Plusieurs estimateurs existent tels que ceur de CFG, de
Hall-Tajvidi et la correction de FGS.

Les estimateurs de CFG et de Hall-Tajvidi sont les estimateurs classiques qui performent
le mieux en pratique. Toutefois, ils ne respectent pas les contraintes imposées de la fonction
de Pickands. Nous proposons alors deux alternatives pour faire l’estimation. La premicre est
une correction d’estimateurs basée sur une nouvelle propriété de la variable aléatoire des
observations qui vient améliorer la performance d’estimateurs en les forcant a respecter les
contraintes exigées de la fonction de Pickands. La seconde est un estimateur bayésien basé
sur les connaissances a priori que la fonction de répartition de Z, une transformation de
la variable aléatoire des observations, doit prendre une certaine forme. Cette idée originale,
combinée avec la correction proposée, donne un estimateur performant de la fonction de

Pickands qui respectent ses contraintes.

Corriger un estimateur de la fonction de Pickands pour qu’il respecte les contraintes
imposées est une idée qui date de Pickands (1981), dans la publication du premier estimateur.
Fils-Villetard et al. (2008) ont proposé une correction d’estimateurs performante. Par contre,
elle nécessite l'ajustement d’un hyperparamétre et elle fonctionne a l'aide d’un algorithme
complexe et couteuz en temps de calculs (il requiert une optimisation a contraintes linéaires).
La nouvelle propriété découverte nous permet de proposer une correction d’estimateurs simple
et rapide qui rivalise celle de FGS sur les cas particuliers obtenus dans notre simulation. De
plus, notre correction est flexible puisque 'ajustement basé sur la nouvelle propriété peut étre

combiné avec d’autres corrections de la convezité pour tenter de la rendre plus performante.

Parmi tous les estimateurs considérés dans ce mémoire et sur les bases de simulations,
l’estimateur bayésien proposé a obtenu, pour trois distributions a priori différentes et des
parametres non ajustés, les erreurs quadratiques moyennes les plus basses. De plus, notre
estimateur ne considérait que des fonctions de répartition a priori de loi béta. L’estimateur

peut étre ajusté au probleme dans lequel il sera appliqué en utilisant d’autres distributions



a priori et des paramétres refiétant mieuz les connaissances a priori de l’expérimentateur(-

trice) que ceux utilisés dans cet ouvrage.

Ce mémoire propose alors deuxr méthodes d’estimation de la fonction de Pickands perfor-
mantes, basées sur des idées originales et qui ont la flexibilité d’étre ajustées et modifiées de

maniére d mieux répondre auzr besoins pour lesquels elles sont requises.
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Annexe 1 : Preuve untvariée d’équivalence du max-stable

Par définition, si G est maz-stable, elle est une distribution de valeurs extrémes.

Si G est une distribution de valeurs extrémes, on a pour a, =n" et b, = (n” —1)/~,

Gan -+ b) = exp"(— (14907 + (17 = 1)/2] /)
— exp” (= [ (1 -+ 72)] )
= exp(—(1 +72) )
- G)






Annexe 2 : Calculs de Capéraa, Fougéres et Genest (1997)

Sans perte de généralité, on suppose ici que les variables aléatoires Z; sont ordonnées. C’est-
a-dire
O< 1< Zy<...< Jy,<1.

Sitel0,Z,], ona:

log AY(t) = /Ot %dz = /Ot (1__ Z)dz =log(1 — 2)|?Z} = log(1 — t)

it = [ e (8 [ e [ L )
o

<Zk‘/n log z — log(1 — 2)) 7=k + Zlog (1-2) Z"“ +log(l — Zy)—

e+ low(1 = 2) 15 2 4 Jog(2) = )

log(1—1t) — log(Zn)>

—(Z bn(log (7107 22) ¢ log(1 ~ 2,) — log(1 — 1) ~ log(2,)

Zp(1 = Zya
i Zen (L= Zy) N\
—log (H - <(1 _kaH) Z i ) ) +log(Z,/(1 — Z,)) + log(1 — t)

= —log (H - < (1= 2) >1/n> — log (1 _ZZnn—l/”> +log(Z,/(1 — Z,)) + log(1 — t)

n

— oz (m, (45 0= 207 flog1 —

Ainsi, on a



An(t) = AP A ()P0

= (1 — ) s exp( —log (HZ:1<(1 — Zk))l/n) + log(1 — t))l_p(t))

( 2
(
(
(

VA 1/n
— (1= 7 « eap Tog (ng 1( o )) >+10g(1 —t>)1—p<t>)
k

1 ) o
2 )/) (1- Q.

p
= (1 — )PV s exp

SitelZ,1], ona:

tHy(z) — 2 %1 —dz 41 g /n —
0 pu— —_— ==
1OgA”(t)_/o 2(1—2) dz = /0 1—2 Z/ 1—zd +/ dz/
i+1 1
=log(1 — 2)|ZZ2" + log(2)|5." + Zz/n/ . z(lidz_

_ Z)
n—1 Zii1 _
>/ dz
= Jz (1 —z
n—1

= log(1 — Zy) + log(t) — log Z, + > _ i/n[log(z)—

i=1

z= Zz+1

—Zlog (1-2)|Z Z”l

Z—Z7,+1
+log(1l — Z,)

log(1—z ]

z2=2Z;

n—1

=log(t) —log Z, + ) _ {log(z/(l — 2))¥n

=1

z2=2;

n—1 ;
Zi 1 1-— ZZ i/n
— log(t) +log((1 — Z,)/Z,) + 3 [1og ( + ) }
pt 1—Z+1 Z

Ziyw 1—12Z )Z/"}
~Zi+1 Z

= log(t) +log((1 — Z,)/Zy) + [log H?ﬂl(l

1 Z\ W
Z)

— log(t) + log I,

o al(0) =~ [ T2 - [N = os() ) = toat)

z(1—2z)
Ainsi, on a
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Au(t) = Ay A (010 = o[, (L) O

Sitel|Z;,Zj], ona:

t Hy(z) — 2 7 —dy 1 (Zinqfn— 2 tj/n—=z
0(4) — VY Ty =
1OgA”(t)_/o z2(1—2z) dz /0 1—Z+;/Zi Z(l—Z)dZ+ Zj Z(l_z)dz

Jj—1

=log(1 — 7)) + Zi/n{log(z) —log(1l — z2)

z=Ziy1

j—1
+ > log(1 —2)| 225"

z2=7; i=1

+j/n / 17_)+10g(1_2)|zZ

2=Zit1
=log(l1—7;) + Zz/n{log(z) —log(1—z) : +log(l — Z;) — log(1 — Z4)

i=1

z2=27;
+ j/nlog(t) — j/nlog(l —t) — j/nlog Z; + j/nlog(l — Z;) +log(1 — t) — log(1 — Z;)
Ziyn 11— 7 i/n]

/n , j-1
— ) +log(1 — )™/ 4 3" og {
i=1

= log(tj/") + log (

Z; 1 —=Zi1 Z;
) 1 — Z 1/n
— Tog(#/™) + log(1 — £)"=/n 4 Zlog { _
=1 g
VH,(2) — = Zj+1 j/n — z l rZi g/ — 2 1]
Slog Al = [ T = | d / d ~d
o8 Au(t) t 2(1—2) = z(l—z)z—i_i;_l zi  z2(1—2) i ez
=j/n(log Z;+1 — log(1 — Z;4+1) — log(t) + log(1l — t)) + log(1 — Z;11) — log(1 — )
Z; 1-— =
+ Z i/n(log ( 7 ) + Z log(1 Zl“ — log(Z,)
=741 Zj+1 ZZ =741
1— t]/n n—1 1— 7. 1/n 7 (n—1)/n
zlog( )—log(l—t)—i—Zlog( . )—l—log( = )
t i=j+1 Zi 1—-2,
1-2,
+ log( 7 )
1 —tilm n 1—zYm
= log ( ; ) —log(l —1t) + _Z log ( Z >
i=j+1
(j—n)/n /n 1 -2 Y
— log((1 = )0-/") —log(#/") + 3" log ( >
i=7+1 ZZ

Ainst,
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7 1/n)

log AL(1) = log((1 = 1)/ + log(#7") + 3 log (12

i=j+1

On obtient alors

1—zYn

; . . p() [ . ) 7. 1/nq1—p(t)
An(t) — t]/n(l . t)lfj/nﬂgzl } |:t]/n(1 . t)l*_]/nl—[n ZZ' }

i=J+17 _ 7
i 1— 7

= 11— 1) QT (Qu Q)Y
__1j/n 1-j5/n =1 1—p(t)
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Annexe 3 : Algorithme de l’estimateur bayésien

Algorithme de l’estimateur bayésien :

(1) Choisir une fonction de Pickands ou une fonction de répartition de Z a priori basée

Sur nos croyances.

(2) Choisir le paramétre « du processus de Dirichlet (le niveau d’importance qu’on

attribue d notre fonction de répartition a priori).

Zi
1—Zi

(3) Centré les données log<

(4) Calculer numériquement l'intégrale

A, (t) = ea:p{ /Ot }mdu}, t €10,1]

ou H} est l’espérance a posteriori d’un processus de Dirichlet basée sur les données

centrées.

(5) Appliquer une correction pour la converité.



Implémentation de l’algorithme en R :

centralize 7 <— function(z) {

# To the Y space
y <= log(z / (1-2))

# centralization
y_bar <— mean(y)
Y <—y — y_bar

# To the Z space
return( exp(y_) / (1 + exp(y_)))}

cfg_bayes <— function(t, alpha = 5, data, centralize = F, a = 3, b =

#Set up data
n <— nrow(data)

z <— log(data[,1]) / log(data[,1]*data],2])
z <— sort(z)
z <— centralize_Z(z)

# Empirical function
Fn <— stats ::ecdf(z)

z <— ¢c(0,2,1)

# Term to be integrate for the estimator

integrante <— function(z) {

(n / (n+alpha) * Fn(xz) + alpha / (n + alpha) % pbeta(z, a, b) — z) /
(zx(1—x))
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# Integration to obtain the log estimator (in the form of CFG)
cfg_estimates <— sapply (2:(length(z_)—1), function(i) {

integrate (integrante , lower = z_[i—1], upper = z_[i]) $value

+)

Az <— pmin(exp (c(cumsum(c(0, cfg _estimates)), 0)), 1)

# Convexity obtention
convhull__chull <— sort(chull(cbind(z_, Az)))
t <— unique(sort(c(t, z_ [convhull chull])))

estimates <— rep(NA, length(t_))
estimates [which (t_ %in% z_[convhull_chull])] <— Az[convhull_chull]

data__ <— cbind(t =t_, A = estimates)
cfg_estimates <— zoo::na.approz(data_[,"A"], z =1_)

cfg_estimates <— cfg_estimates [which(t_ %in% t)]
ordered__est <— rep(0,length(cfg_estimates))

ordered__est[order(t)] <— cfg_estimates

ordered__est
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