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Abstract. While some methods are confined to linear embeddings and
others exhibit limited robustness, high-dimensional time series factoriza-
tion techniques employ scalable matrix factorization for forecasting in
latent space. This paper introduces a novel factorization method that
employs a non-contrastive approach, guiding an autoencoder-like archi-
tecture to extract robust latent series while minimizing redundant infor-
mation within the embeddings. The resulting learned representations
are utilized by a temporal forecasting model, generating forecasts within
the latent space, which are subsequently decoded back to the original
space through the decoder. Extensive experiments demonstrate that our
model achieves state-of-te-art performance on numerous commonly used
datasets.

Keywords: Time series factorization · Probabilistic forecasting ·
Non-contrastive learning

1 Introduction

Modern time series forecasting, involving correlated multivariate time series
over an extended period, encounters challenges with conventional methods
like autoregressive models (AR, ARIMA) [12], especially when handling large
datasets with hundreds of thousands of time series due to scalability issues.
Deep learning, exemplified by LSTM [8] and Temporal Convolution Networks
(TCN) [1], addresses this by training on the entire dataset, utilizing shared model
parameters. However, these deep learning methods inherently struggle with cap-
turing inter-series interactions and correlations observed in diverse domains [24].

A promising research direction explores factorizing time series relationships
into a low-rank matrix, yielding a concise latent time series representation
[22,27,32]. Temporal Regularized Matrix Factorization (TRMF) [32] achieves
this by representing each time series with a linear combination of a few latent
series and applying linear temporal regularization to ensure temporal dependen-
cies. Forecasted values in the latent space are transformed back using matrix mul-
tiplication. DeepGLO [27] extends TRMF with nonlinear regularization, incorpo-
rating iterative training between linear matrix factorization and fitting a latent
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space Temporal Convolutional Network (TCN). Another advancement, named
Temporal Latent AutoEncoder (TLAE) [22], incorporates a nonlinear framework
through an autoencoder to extract the latent time series space. TLAE forecasts
within the embedding space, and then transforms forecast to the original space
through a decoder. All these factorization methods lack robustness, overlooking
random noise and distortions in data that may lead to issues like overfitting.

To address the aforementioned limitations and extend the existing line of
factorization research, we introduce the FR3LS forecasting model. Illustrated
in Fig. 1, FR3LS nonlinearly projects high-dimensional time series into a latent
space with manageable dimensions, facilitating future value forecasting using
latent representations. The final predictions are derived by decoding latent fore-
casts generated by the middle layer forecasting model. This latent prediction
approach serves to regularize the embedding space (latent space), capturing tem-
poral dependencies between embeddings. Furthermore, latent representations
undergo additional regularization through a non-contrastive objective with only
positive samples. This means that the model is trained to produce embeddings
robust to distortions applied to input subseries (i.e., augmented context views),
while minimizing redundancy between components of the vector embedding.
Thus, we present an all-in-one model capable of learning robust representations
while maintaining a connection between forecasts in latent and original spaces.

2 Related Work

We focus on recent deep learning approaches beyond traditional methods. Fur-
ther details on classical methods (e.g., AR and ARIMA) can be found in
[2,12,20]. Deep learning methods, encompassing RNNs [23,26], CNNs [1], GNNs
(Graph NNs) [4], and Transformers [36], have gained acclaim for their effective-
ness in time series forecasting, surpassing classical models like ARIMA and VAR
(Vector AR). For instance, TCN [1] uses dilated convolutions to enhance effi-
ciency and predictive performance over traditional RNNs. Models like LSTnet
[15] combine CNNs and RNNs to capture short-term local dependencies and
long-term trends. Additionally, LogTrans [16] and Informer [36] address self-
attention efficiency and excel in forecasting tasks with extended sequences. Fur-
thermore, GNNs such as StemGNN [4], offer competitive results in multivariate
time series forecasting by exploring the spectral domain of the data.

Several deep neural network (DNN) models have been proposed for multi-
variate forecast distributions [6,24,25,31]. A low-rank Gaussian copula model
was proposed in [25] using a multi-task univariate LSTM. In [31], a deep factor
generative model using a linear combination of RNN latent global factors plus
parametric noise was introduced. Normalizing flows for probabilistic forecasting
with a multivariate RNN as well as a normalizing flow approach was used in [24].
VRNN was proposed in [6] as a model that uses a variational AE (VAE) in every
hidden state of a RNN across the input series. However, such methods suffer from
one of the following shortcomings: limited flexibility in modeling distributions
in high-dimensional settings [25], only linear combinations of global series and
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noise distributions are modeled [31], invertible flow needs equal latent and input
dimensions [24], and multistep prediction propagation through the whole model
is required [6]. Additionally, scaling these methods for high-dimensional multi-
variate series presents a significant challenge.

3 Problem Setup

Consider a high-dimensional multivariate time series dataset Y ∈ R
T×N , rep-

resented by Y1:T = (y1, y2, . . . , yT )T , where each time point yt is a vector of
dimensionality N (i.e., yt ∈ R

N ). The objective is to forecast the next τ values
YT+1:T+τ = (yT+1, yT+2, . . . , yT+τ )T based on the original time series within
the training time-range Y1:T . The challenging yet intriguing task is to develop a
model capable of capturing the conditional probability distribution in the high-
dimensional space:

p(yT+1, . . . , yT+τ |y1:T ) =
τ∏

i=1

p(yT+i|y1:T+i−1). (1)

4 Model Architecture

Following TLAE [22], we introduce an autoencoder-like structure for extracting
latent series with temporal regularization in the latent space. The complete
FR3LS architecture is illustrated in Fig. 1. Starting with the input Y ∈ R

w×N ,
our model is trained to extract meaningful latent series X. A forecasting model
is then employed to predict the next values in the latent series. Finally, a decoder
is applied to the latent forecasts, producing forecasts in the original space.

The encoder EθE (.) comprises three components: an Input Projection Layer
(IPL), a Timestamp Noising (TN) module, and a Feed Forward neural network
(FF), inspired by the work in [33]. The Input Projection Layer consists of a fully
connected layer that maps each vector yt ∈ R

N at a timestamp to an interme-
diate latent vector zt ∈ R

dz , with dz ∈ N
∗. The Timestamp Noising module

introduces small noise to selected entries of Z = (z1, . . . , zw)T at randomly cho-
sen timestamps, generating distorted outputs Z̃(1) and Z̃(2). These distortions
are applied to Z (intermediary subsequence) instead of directly on raw values
Y or latent ones X for enhanced model learning stability. The Feed Forward
neural network then projects the intermediate latent vectors Z̃(j), j ∈ {1, 2} into
the two augmented views X̃(1) and X̃(2) ∈ R

w×d. Subsequently, we apply the
Timestamp Mean module to produce the latent series given as input to the fore-

casting model: X = (x1, x2, . . . , xw)T ∈ R
w×d, where xt = x̃

(1)
t +x̃

(2)
t

2 and d << N
is the dimensionality of the latent space. It is worth noting that we opted for
two context views for model simplification and computational ease, but users
can choose a different number if desired
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Fig. 1. Model architecture overview.

4.1 Temporal Contextual Consistency

Constructing positive pairs is essential in non-contrastive learning. Following
the recommendations of [33], we adopt the temporal contextual consistency
paradigm, treating representations at the same timestamp in two augmented
contexts as positive pairs to avoid the generation of false positives. We create a
context by applying timestamp (light) noising to the intermediary subsequence
Z. This approach leverages the fact that timestamp light noising does not alter
the magnitude of the time series. Moreover, it encourages the model to learn
robust representations at different timestamps capable of reconstructing them-
selves in distinct contexts.

Timestamp Noising generates an augmented context view for an input
series by randomly introducing noise to some of its timestamps. Specifically, it
adds small noise to the latent vectors zt ∈ R

dz obtained immediately after the
application of the Input Projection Layer, defined as z̃t = zt+btεt along the time
axis. Here, bt ∈ {0, 1} is a random variable drawn from a Bernoulli distribution
with a probability of p = 0.5 (i.e., bt ∼ B(0.5)), εt ∼ N (0, 1), and both random
variables bt and zt are independently sampled in every forward pass.

4.2 Non-contrastive Representations Learning

As self-supervised learning (SSL) has demonstrated significant advancements in
enabling models to acquire meaningful representations across various domains,
Ts2Vec [33] incorporated the concept of contrastive learning to learn time series
representations. However, this learning approach is susceptible to selecting false
negatives in series with homogeneous distributions, where p(yt) � p(yt+l) for
some small integer l. To address this issue, we propose a non-contrastive strategy,
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aiming to encourage the model to learn exclusively from positive samples. This
strategy has shown substantial potential in previous works, such as [5,10,34].

As depicted in Fig. 1a, after generating the augmented views X̃(1), X̃(2) by
applying the timestamp noising module followed by the feed forward module,
we treat representations at the same timestamp from the two views as positive
samples. The Barlow Twins loss (LBT ) [34] serves as the loss function describing
the non-contrastive error of the model, defined by:

LBT �
d∑

i=1

(1 − Cii)2 + λNC

d∑

i=1

d∑

j=1
i�=j

C2
ij , (2)

where λNC > 0 and C is the cross-correlation matrix computed between the two
augmented views along the timestamps (batch) dimension:

Cij �
∑

t x̃
(1)
t,i x̃

(2)
t,j√∑

t(x̃
(1)
t,i )2

√∑
t(x̃

(2)
t,j )2

. (3)

This loss function encourages the cross-correlation matrix between embedded
outputs to be as close to the identity matrix as possible. Specifically, we aim to
equate the diagonal elements to 1, promoting invariance to distortions applied,
and the off-diagonal elements to 0, thereby decorrelating different vector compo-
nents of the embedding and reducing redundant information in the embeddings.

4.3 Deterministic Forecasting

When the latent representation X effectively captures the information in Y , tasks
such as forecasting in the original space can be efficiently performed within the
much smaller latent space. To this end, we introduce a layer between the encoder
and decoder to extract the temporal structure of the latent representations while
enforcing forecasting abilities. The central idea is illustrated in Fig. 1b: a fore-
casting model FθF (.), such as LSTM [11], is employed in the middle layer to
capture the long-range dependencies of the embeddings.

The latent matrix X = (x1, . . . , xw) is divided into two subseries: X1:L =
(x1, . . . , xL) and XL+1:w = (xL+1, . . . , xw). During the training phase, the fore-
casting model is utilized to estimate the second subsequence X̂L+1:w. Subse-
quences of length L < w denoted by the set

{
(xj+1, . . . , xj+L)

∣∣j ∈ [|0, w−L−1|]}
([|a, b|] denotes a closed integer interval) serve as inputs to the forecasting model,
producing latent forecasts X̂L+1:w =

(
x̂j+L+1 = FθF ((xj+1, ..., xj+L))

)w−L−1

j=0
.

The forecasting model is then trained using the deterministic loss LFD with a
�q norm, described as:

LFD � 1
d(w − L)

w−l−1∑

j=0

‖xj+L+1 − FθF
(
(xj+1, ..., xj+L)

)‖q
�q

. (4)
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4.4 Probabilistic Forecasting

In high-dimensional settings, probabilistic modeling of forecasts conditioned on
observed ones, i.e., p(yT+1, . . . , yT+τ |y1:T ), poses a significant challenge. Previous
research has predominantly focused on either modeling each individual time
series independently or considering the joint distribution as Gaussian. However,
the former approach neglects inter-series interactions, while the latter suffers
from a quadratic increase in the number of learned parameters with the data
dimension.

Once again, in the context of probabilistic modeling, we advocate for the non-
linear encoding of input data into a significantly lower-dimensional space [22].
Assuming that the encoder function EθE is sufficiently trained to be considered
a one-to-one function, we can then associate the probability of the latent series
X with that of the original series Y (p(x) = p(y)). Subsequently, we could incor-
porate a fairly simple probabilistic structure, such as a Gaussian distribution, in
the latent space and still be able to model complex distributions of multivariate
data through the decoder mapping:

p(xi+1|x1:i) = N (xi+1;μi, 1), i ∈ [|L,w|]. (5)

Here, we identify the conditional distribution as a multivariate Gaussian, with
the identity matrix as the covariance matrix to guide the embeddings in captur-
ing different orthogonal patterns in the data. The mean μi is computed using
the function FθF as μi = FθF (x1, ..., xi). We employ the reparameterization
trick [14] to generate latent forecasts needed for backpropagation through input
data. In other words, we estimate the value of xi+1 using x̂i+1 = μi + 1ε =
FθF (x1, ..., xi) + 1ε = R ◦ FθF (x1, ..., xi), where ε ∼ N (0, 1), and R(.) describes
the reparameterization trick function, such that R(x) = x + 1ε. Similar to the
deterministic setting, the forecasting loss function is defined as LFP using a �q

norm as:

LFP � 1
d(w − L)

w−l−1∑

j=0

‖x̂j+L+1 − xj+L+1‖q
�q

. (6)

4.5 End-to-End Training

After producing elements X̂L+1:w, the decoder takes the matrix X̂ = (X1:L;
X̂L+1:w) ∈ R

w×d as input and generates the matrix Ŷ = (ŷ1, ŷ2, . . . , ŷw) ∈ R
w×N

as Ŷ = DθD(X̂). Consequently, the output Ŷ comprises two components: the
first consists of elements ŷi, with i ∈ [|1, L|], decoded directly from the encoder
output without passing through the middle layer, defined as ŷi = DθD ◦ EθE (yi),
whereas the forecasting model is involved in decoding the second part ŷi = DθD ◦
R∗ ◦ FθF ◦ EθE

(
(yi−L+1, . . . , yi)

)
, with i ∈ [|L + 1, w|], and R∗(.) � Identity(.)

in the point estimate problem or R∗(.) � R(.) otherwise.
Minimizing the error LAE � 1

Nw‖Ŷ − Y ‖p
�p

could then be thought of as
enabling latent representations to have predictive abilities while also being capa-
ble of faithfully reconstructing data. The objective function for a batch Y is
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defined as:
LY (θE , θF , θD) � λAELAE + λF LF + λBT LBT , (7)

where λAE , λF , λBT ∈ R
+ are positive constants, and LF � LFD for the deter-

ministic case or LF � LFP otherwise.
Once the model is trained, several steps ahead forecasting is performed using

rolling windows. Given the past input data (yT−L+1, . . . , yT ), the trained model
constructs the latent prediction x̂T+1 = R∗ ◦ FθF

(
(xT−L+1, . . . , xT )

)
. Subse-

quently, the predicted point ŷT+1 is decoded from x̂T+1. This operation can
be repeated τ times to predict τ future points of the input time series Y,
where we produce the latent prediction x̂T+2 by providing the subsequence
(xT−L, . . . , x̂T+1) as input to the forecasting model.

5 Experiments

Deterministic Forecasting Experimental Setup: For point estimation, we
conduct a comparative analysis with state-of-the-art multivariate and univari-
ate forecasting methods, following the approach in [27] and [32]. Our evalua-
tion employs three popular datasets: electricity [30]: hourly consumption of 370
houses, traffic [7]: hourly traffic on 963 car lanes in San Francisco, and wiki [18]:
daily web traffic of about 115k Wikipedia articles. We conduct rolling forecast-
ing with 24 time points per window, reserving the last 7 windows for testing in
both the traffic and electricity datasets, and 14 points per window with the last
4 windows for testing in the wiki dataset. Evaluation metrics include mean abso-
lute percent error (MAPE), symmetric MAPE (SMAPE), and weighted average
percentage error (WAPE) as in [27].

The model architecture and optimization setup align with TLAE, featuring a
bottleneck feed-forward network with RELU nonlinearity functions on all layers
except the last ones of both the encoder and decoder modules. The dimensions
of the layers vary according to the dataset. In the latent space, a 4-layer LSTM
network is employed, with 32 hidden units for traffic and wiki datasets, and 64
for electricity, following the recommendations of [22]. The �1 loss is used in the
LAE loss, and the �2 loss is used in the LFD loss. Regularization parameters
λAE , λF , λBT are all set to 1, and λNC is set to 0.005 as suggested in [34].
Additional setup and training details are provided in Tables 1a and 1b as well
as Sub-sect. 5.3.

Probabilistic Forecasting Experimental Setup: for the analysis of proba-
bilistic estimation, we introduce two additional datasets: solar : hourly photo-
voltaic production data from 137 stations used in [15], and taxi : New York
taxi rides taken every 30 min from 1214 locations [28]. Our evaluation compares
the performance of our model against state-of-the-art probabilistic multivari-
ate methods introduced in [22,25,31], as well as univariate forecasting methods
[16,23,26], all utilizing the same data setup. It’s essential to note that the data
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Table 1. Statistics and network architectures of datasets.

(a) Statistics of datasets used in both deterministic and probabilistic
forecasting experiments.

Dataset Time
Steps T

Dimension
N

Predicted
Steps τ

Rolling
Window
k

Frequency

Traffic 10392 963 24 7 hourly

Electricity (large) 25920 370 24 7 hourly

Electricity (small) 5833 370 24 7 hourly

Wiki (large) 635 115084 14 4 daily

Wiki (small) 792 2000 30 5 daily

Solar 7009 137 24 7 hourly

Taxi 1488 1214 24 56 30-min

(b) Network architecture per dataset. Encoder dims = number
neurons/layer of the encoder.

Dataset Encoder dims LSTM
layers

LSTM
hidden
dim

sequence
length L

Traffic [256, 128, 64] 4 32 32

Electricity (large) [256, 128, 64] 4 64 32

Electricity (small) [128, 64] 4 64 32

Wiki (large) [256, 128, 64] 4 32 16

Wiki (small) [128, 64] 4 32 64

Solar [256, 128, 64] 4 32 32

Taxi [256, 128, 64] 4 32 112

processing and splits utilized in this analysis differ from those of point forecast-
ing. We maintain an identical network architecture as in our previous experi-
mental setup and use the same values for regularization parameters, as well as
�2 loss for LFP .

To assess the quality of our probabilistic estimates, we employ two distinct
error metrics: the first metric is the Continuous Ranked Probability Score across
Summed time series (CRPS-Sum) [9,19,22,25], which measures the overall fit of
the joint distribution pattern. The second metric is the mean square error (MSE),
which assesses the fit of the joint distribution central tendency. Together, these
two metrics provide a comprehensive evaluation of the precision of our predictive
distribution fit.

5.1 Experimental Results

Table 2a presents a comparison of various deterministic prediction approaches.
Results for all models, except the FR3LS model, were originally reported in [22]
under the same experimental setup. Here we do not compare our model with
classic methods such as VAR, ARIMA etc., as it has already been shown that
they obtain performance inferior to TLAE, TRMF and DeepAR methods ([22,
26,32]). Global models leverage global features for multivariate forecasting, while
local models employ univariate models to predict individual series separately.

In Table 2b, we display the error scores comparison for probabilistic algo-
rithms. Most results are drawn from Table 2 of [22], with our FR3LS results
provided at the end. Conventional statistical multivariate techniques, such as
VAR and GARCH ([2,17]), and Vec-LSTM methods, which use a single global
LSTM to process and predict all series simultaneously, are included. Addition-
ally, GP methods encompass DNN Gaussian process techniques proposed in [25],
with GP-Copula being the primary approach. Further details can be found in
[25].

As seen in Table 2a, our method outperforms other global factorization meth-
ods in 8 out of 9 dataset-metric combinations. Compared to TLAE, our method
achieves an average gain of up to 15% in traffic performance and 13.4% in elec-
tricity. Furthermore, compared to other methods, we observe a gain of up to
50% in performance in both the traffic and electricity datasets. For probabilistic
forecasting, as shown in Table 2b, our proposed model demonstrates superior
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performance in the majority of dataset-metric combinations (7 out of 10), with
significant gains observed in the Solar, Traffic, and Taxi datasets.

The improvement of the results seen in Tables 2a and 2b over our direct
competitor model, TLAE, in both deterministic and probabilistic settings, can
be attributed to the enhancement of the latent representations learned by the
model. Indeed, enabling the model to be robust against distortions applied to the
embeddings enhances its stability in capturing the underlying latent series with
predictive power for the time series at hand. Moreover, constraining the model to
have embeddings with decorrelated vector components, that is, minimizing the
C2

ij terms in (2), effectively reduces the redundancy of the latent representations.
This, in turn, aids the model in focusing on learning latent series that are well-
distributed in the latent space.

It is important to note that we utilized LSTM as both the forecasting model
and a standard feed-forward autoencoder architecture. We did not employ more
advanced models such as TCNs and N-Beats, which could potentially lead to
further enhancements. Moreover, in the deterministic prediction case, our model
did not use additional local modeling or exogenous features, in contrast to local
and combined methods, yet achieved superior performance on 2 out of 3 datasets
across all metrics. Finally, we emphasize that our model does not require any
further retraining during the testing phase.

5.2 Visualization of Latent and Original Series Forecasts

Figure 2a illustrates the dynamics of trained latent variables and their predic-
tions on the traffic dataset. The blue curve represents the original latent series,
while the orange curve depicts their mean predictions. The light-shaded gray
area signifies the 90% prediction interval. For each of the 168 predicted times-
tamps (7×24), 1000 prediction samples were generated. The figure demonstrates
that latent variables possess the ability to capture global trends in individual
time series. Despite having unique local properties, these latent variables exhibit
similar global repeating patterns.

Additionally, Fig. 2b showcases a selection of real-time series variables from
the traffic dataset alongside their corresponding predictions. The original time
series, Y , is depicted in blue, while the predicted time series, Ŷ , is shown in
orange. The light-shaded gray area represents the 90% prediction interval. The
predictive power of the latent representations in FR3LS enables the model to
accurately capture the overall pattern of the original time series. Furthermore,
the model performs well in predicting the local variability associated with indi-
vidual time series.

5.3 Further Experimental Setup Details

To train the model, we use the Adam optimizer [13] with a learning rate of
0.0001, commonly recommended for stability. Our observations indicate that
higher learning rates often lead to unstable performance. To prevent explod-
ing gradients and stabilize model training, we employ gradient clipping. This
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Table 2. Comparison of different forecasting algorithms.

(a) Deterministic algorithms comparison in terms of WAPE/MAPE/SMAPE metrics. Best global factorisation results are
indicated in bold, best overall performance with *.

Model Algorithm Datasets

Traffic Electricity Wiki

Global factorisation FR3LS (proposed method) 0.102∗/0.116∗/0.090∗ 0.071∗/0.127∗/0.105∗ 0.290/0.463 /0.380

TLAE [22] 0.117/0.137/0.108 0.080/0.152/0.120 0.334/0.447/0.434

DeepGLO-TCN-MF [27] 0.226/0.284/0.247 0.106/0.525/0.188 0.433/1.59/0.686

TRMF [32] 0.159/0.226/0.181 0.104/0.280/0.151 0.309/0.847/0.451

SVD+TCN 0.329/0.687/0.340 0.219/0.437/0.238 0.639/2.000/0.893

Local & combined DeepGLO-combined [27] 0.148/0.168/0.142 0.082/0.341/0.121 0.237/0.441/0.395

LSTM [11] 0.270/0.357/0.263 0.109/0.264/0.154 0.789/0.686/0.493

DeepAR [26] 0.140/0.201/0.114 0.086/0.259/0.141 0.429/2.980/0.424

TCN (no LeveldInit) [1] 0.204/0.284/0.236 0.147/0.476/0.156 0.511/0.884/0.509

TCN (LeveldInit) [1] 0.157/0.201/0.156 0.092/0.237/0.126 0.212∗/0.316∗/0.296∗

Prophet [29] 0.303/0.559/0.403 0.197/0.393/0.221 –

(b) Probabilistic comparison in terms of CRPS-Sum/MSE metrics. Lower scores indicate better results. A ‘–’ denotes a
method failed (e.g., due to the lack of scalability).

Algorithm Solar Electricity-small Traffic Taxi Wiki-small

VAR 0.524/7.0e3 0.031/1.2e7 0.144/5.1e–3 0.292/– 3.400/–

GARCH 0.869/3.5e3 0.278/1.2e6 0.368/3.3e–3 –/– –/–

Vec-LSTM-ind 0.470/9.9e2 0.731/2.6e7 0.110/6.5e–4 0.429/5.2e1 0.801/5.2e7

Vec-LSTM-ind-scaling 0.391/9.3e2 0.025/2.1e5 0.087/6.3e–4 0.506/7.3e1 0.113/7.2e7

Vec-LSTM-fullrank 0.956/3.8e3 0.999/2.7e7 –/– –/– –/–

Vec-LSTM-fullrank-scaling 0.920 /3.8e3 0.747/3.2e7 –/– –/– –/–

Vec-LSTM-lowrank-Copula 0.319/2.9e3 0.064/5.5e6 0.103/1.5e–3 0.4326/5.1e1 0.241/3.8e7

LSTM-GP [25] 0.828/3.7e3 0.947/2.7e7 2.198/5.1e–1 0.425/5.9e1 0.933/5.4e7

LSTM-GP-scaling [25] 0.368/1.1e3 0.022/1.8e5 0.079/5.2e–4 0.183/2.7e1 1.483/5.5e7

LSTM-GP-Copula [25] 0.337/9.8e2 0.024/2.4e5 0.078/6.9e–4 0.208/3.1e1 0.086/4.0e7

VRNN [6] 0.133/7.3e2 0.051/2.7e5 0.181/8.7e–4 0.139/3.0e1 0.396/4.5e7

TLAE [22] 0.124/6.8e2 0.040/2.0e5 0.069/4.4e–4 0.130/2.6e1 0.241/3.8e7

FR3LS (proposed method) 0.091/3.5e2 0.038/1.4e5 0.056/3.7e–4 0.123/2.5e1 0.244/3.9e7

technique limits the magnitude of gradients during backpropagation [21]. Fur-
thermore, we implement an adaptive learning rate scheduling strategy to control
the training optimization process’s convergence while enhancing stability [3].

We adhere to the recommendation of TLAE [22] for setting the subsequence
lengths L and w as w = 2 × L. Additionally, when selecting input data for
training, a potential approach is to employ sliding windows that overlap entirely,
except for one time point, between two subsequences. For instance, we can use
two batches, Yt:t+w and Yt+1:t+w+1, at times t and t + 1, respectively, where
w represents the input subsequence length. However, to expedite the training
process, we choose the nonoverlapping regions as follows: 12, 24, 12, 12, 12, 1, and
12 for the traffic, electricity (large), electricity (small), solar, taxi, wiki (large),
and wiki (small) datasets, respectively. In other words, smaller nonoverlapping
window sizes were used for smaller datasets.

The source code, along with reproducibility instructions for the model and
experiments, is publicly available at github.com/Abdallah-Aaraba/FR3LS.

https://github.com/Abdallah-Aaraba/FR3LS
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Fig. 2. Latent and original series forecasting visualization.

6 Conclusion

This paper introduces an efficient approach for high-dimensional multivariate
time series forecasting, advancing the current state-of-the-art in global fac-
torization methods. The method achieves this by combining a flexible nonlin-
ear autoencoder mapping, regularized through a non-contrastive self-supervised
learning approach, along with a forecasting model capturing latent temporal
dynamics. Furthermore, the proposed approach enables end-to-end training and
demonstrates its capability to generate complex predictive distributions by mod-
eling the distribution in the latent space through a nonlinear decoder. Our experi-
ments showcase the superior performance of this method when compared to other
state-of-the-art techniques across various commonly used time series datasets.
Future research directions may involve exploring alternative temporal models
and considering a Transformer-based approach [35] to mitigate the accumula-
tion of forecast errors in sequential predictions and reduce training time.
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