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Abstract. Correlations between variables in complex ecosystems such
as weather and financial markets lead to a great amount of dynamic
and co-evolving time series data, posing a significant challenge to the
current forecast methods. Discovering dynamic patterns (aka regimes) is
crucial to an accurate forecast, especially for the interpretability of the
outcome. In this paper, we develop a kernel-based method to learn effec-
tive representations for capturing dynamically changing regimes. Each
such representation accounts for the non-linear interactions among mul-
tiple time series, thereby facilitating more effective regime discovery. On
the basis of regime information, we build a regression model to forecast
all the variables simultaneously for the next multiple time points. The
results on six real-life datasets demonstrate that our method can yield
the most accurate forecast (with the lowest root mean square error) in
comparison with seven predictive models.

Keywords: time series forecasting - kernel - self-representation
learning

1 Introduction

Time-series forecasting is an important topic that continuously attracts a great
deal of interest in a myriad of areas such as finance, medicine, meteorology,
ecology, sociology, and many industrial sectors. In real applications, time series
often comprise numerous short segments, each recurring within the series. These
segments generally correspond to particular regimes/patterns in dynamically
changing environments — e.g., on the volatile financial market [6,13], stock prices
might decline during wartime and subsequently rise with the onset of peace talks.
Discovering and leveraging these underlying regimes has become an essential
research topic for generating accurate and interpretable time-series forecasts.
To capture the dynamic behaviors of time series, several machine learn-
ing methods have been developed to explore the regimes for time series fore-
casting, e.g., RSVAR [8] for health management, WCPD-RS [4] in financial,
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and ObritMap [11] in IoT/sensor streams analysis. These models suggest that
the presence of structural discontinuities in time series leads to a regime shift,
wherein each regime represents distinct behaviors that reveal the underlying
dynamics throughout time. In general, these models first analyze the overall
regime shifts present in the time series data and subsequently employ the derived
models to forecast future regimes. However, certain characteristics of time series
can be hard to capture when time series exhibit nonlinearity, mixing, or noise.
Furthermore, the requirement to predefine the number of regimes in many mod-
els, such as the Markov-based switching model [4], limits their flexibility in
dynamically inferring and estimating regimes from data.

Another significant challenge arises from the complexity inherent in identi-
fying regimes within multiple time series forecasting tasks [14]. This difficulty
primarily stems from the interdependence and co-evolution of the time series —
e.g., to forecast the traffic for a particular road, it is necessary to consider the
impact of traffic on adjacent roads; similarly, the fluctuating user engagement
with music streaming services-evidenced by the decline in Pandora’s click rates
and the simultaneous surge in Spotify’s from 2012 to 2022-suggests competitive
dynamics, with Spotify seemingly attracting Pandora’s user base. Exploring the
interrelationships between series at different time intervals is crucial for regime
identification and prediction.

To address these challenges, we propose a novel approach for multiple time
series forecasting, emphasizing modeling of their evolving interactions and regime
identification. Our method redefines regime identification from the perspective
of self representation learning and transforms the challenge into a subspace clus-
tering problem. This transformation allows for a more nuanced and granular
analysis of multiple time series data, leading to a more precise and interpretable
forecasting model. Our method has the following desirable properties:

(1) Adaptive: Automatically identify and handle regimes (patterns) exhibited
by multiple time series, without prior knowledge about regimes.

(2) Interpretability: Convert heavy sets of time series into a lighter and
meaningful structure through kernel representation, depicting the contin-
uous regime shift mechanism over multiple time series in nonlinear space.

(3) Effective: Operate on multiple time series, explore the nonlinear interac-
tions, and forecast the future values within an ecosystem consisting of mul-
tiple time series.

2 Related Work

Traditional time series models, such as general state-space models [3], including
ARIMA and exponential smoothing, excel at modeling the complex dynamics of
individual time series with sufficiently long histories. Although these methods are
widely used in time series forecasting due to their simplicity and interpretability,
they are local in the sense that one model is learned for each time series. Conse-
quently, they cannot effectively extract information across multiple time series.
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Fig. 1. Framework of our method. Given multiple co-evolving time series composed of
various regimes in fixed-length windows, our method learns the kernel representation
of these regimes for forecasting the next regimes.

Hochstein et al. [8] developed a multivariate smooth transition autoregression
model to show how different time series are linearly dependent on each other.
This model uses a vector autoregressive model for each regime. It is worth not-
ing that this type of method attempts to capture the regime shift mechanism
through a single transfer matrix, which unfortunately may be time-dependent
for series that exhibit noncontiguous regimes. Matsubara et al. proposed the
RegimeCast model [10], which learns the various patterns that may exist in a
co-evolving environment at a given window and reports the pattern(s) most likely
to be observed at a subsequent time. While the approach can report subsequent
patterns, it does not capture possible dependencies between patterns. In their
subsequent work [11], the authors introduced the deterministic OrbitMap model,
designed to capture time-dependent transitions between exhibited regimes. How-
ever, their model relies on regimes that are labeled in advance. Recent research
has demonstrated significant advancements in time series analysis through the
use of deep neural networks [15,19-21]. However, the majority of these studies
primarily focus on modeling and forecasting individual time series, often over-
looking the interactions among multiple time series.

3 Preliminaries

3.1 Key Concepts

Time Series. A time series is a set of points ordered by a time index as follows:
Si = {(t1,el)} 1" ,, where t; are regular time stamps, m the series length and e}
the series value at the specific time t;. Here, the index 4 refers to the i-th time
series in a set of N univariate time series S = {S;} ;.
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Regime. In this paper, a regime is defined as the profile pattern of a group of
similar subseries observed within a window instance. The term “profile pattern”
refers to a subseries whose vector representation is the centroid of the similar
subseries. Our model permits highly similar, or repetitive, patterns to occur
across subseries at different windows. This repetition enables the identification of
similar regimes at various window instances, facilitating effective regime tracking.

3.2 Self-representation Learning in Time Series

Time series often exhibit patterns that recur over time. One feasible way to
capture these inherent patterns is through self-representation learning, a concept
derived from subspace clustering [18]. This approach represents each data point
in a series as a linear combination of others, formulated as S = SZ or §; =
> j S;Z;;, where Z is the self-representation coefficient matrix. In multiple time
series, high Z;; values indicate similar behaviors or regimes between S; and S;.
The learning objective function is:

1
min 5||s —SZ|]? + 2(Z), st. Z=12" > 0,diag(Z) = 0 (1)

where (2(-) is a regularization term on Z. The ideal representation Z should
group data points with similar patterns, represented as block diagonals in Z,
each block signifying a specific regime. The number of blocks, k, corresponds to
the distinct regimes.

The optimization of this problem can take various forms, influenced by the
choice of £2(Z). If 2(Z) = ||Z]|1, it results in classical Sparse Subspace Clustering
[7]. Different norms for Z lead to various models like efficient dense subspace
clustering (EDSC), the Frobenius norm in least-squares Regression (LSR) and
the nuclear norm in Low-Rank Representation (LRR).

3.3 Kernel Trick for Modeling Time Series

Linear models in Euclidean space often struggle with capturing nonlinear rela-
tionships in multiple time series [16]. Kernelization techniques address this chal-
lenge by mapping data into higher, and in some cases, infinite-dimensional
Hilbert spaces using suitable kernel functions [17]. This facilitates the identi-
fication of linear patterns within these transformed spaces. The process is facil-
itated by the “kernel trick”, which employs a nonlinear feature mapping, @(S):
R% — H, to project data S into a kernel Hilbert space H. Direct knowledge of the
transformation @ is not required; instead, a kernel Gram matrix IC = &(S) T &(S)
is used. The Gaussian kernel, which results in an infinitely dimensional feature
space ‘H, is notably prevalent in this context.

4 Proposed Method

For the sake of clarity, consider the set of time series depicted by Fig 1(a).
We start by introducing our kernel representation learning. This process entails
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searching for homogeneous patterns via self-representation learning with a block
diagonal regularizer in kernel space. With a given sliding window of size w, we
can split time series into contiguous subseries of length w, i.e., S = U?)=1 S, and
get the number of distinct regimes k& by counting the number of distinct profile
patterns across all window-stamps, W7, ..., W;. Based on the discovered regimes,
we will be able to predict the regime switch and series values.

4.1 Kernel Representation Learning: Modeling Regime Behavior

In our approach, we circumvent the obstacle of discovering regimes for multi-
ple time series, by solving a self-representation learning problem. This approach
allows us to effectively cluster subseries, retrieved using a sliding window tech-
nique, into distinct regimes. We begin with the simplest case, where we treat the
whole series as a single window.

Given a set of time series S = (S1,...,Sy) € RT*N as described in Eq. (1),
its self-representation Z would make inner product SZ come close to S if we
adopted the linear approach. However, the objective (1) falls short in capturing
the nonlinear relationships between series. To address this issue, the time series
can be mapped, by “kernel tricks”, into a high-dimensional RKHS, where a
linear pattern analysis will be performed. By integrating the kernel mapping,
we present a new kernel representation learning strategy (as shown in Fig 1(b),
with the following objective function:

min [|(S) ®(S)Z||?, s.t. Z=2ZT > 0,diag(Z) =0 (2)

Here, the mapping function ®(-) need not be explicitly identified and is typically
replaced by a kernel K subject to IC = ®(-) T ®(+).

Ideally, we hope to achieve the matrix Z having k£ block diagonals under
some proper permutations if S contains k regimes. To this end, we introduce a
regularization term to Z and transform Eq. (2) to:

N
min [|®(S) — OS)ZIP+v D Ai(Lz),
i=N—k+1 (3)
st. Z=12">0,diag(Z) =0

where v > 0 defines the trade-off between the loss function and regularization
terms, and \;(Lz) contains the eigenvalues of Laplacian matrix Lz correspond-
ing to Z in decreasing order. Here, the regularization term is equal to 0 if and
only if Z is k-block diagonal (see Theorem 1 for details). Based on the learned
high-quality matrix Z (containing the block diagonal structure), we can easily
group the time series into k£ regimes using traditional spectral clustering tech-
nology [7].

Theorem 1. min Zi]\pkﬂ Xi(Lz) is equivalent to Z is k-block diagonal.
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Proof. Due to the fact that Z = ZT > 0, the corresponding Laplacian matrix
Lz is positive semidefinite, and thus \;(Lz) > 0 for all ¢. The optimal solution
of min E?[:kaﬂ Ai(Lz) is that all elements of \;(Lz) are equal to 0, which
means that the k& smallest eigenvalues are 0. Combined with the Laplacian matrix
property, the multiplicity k of the eigenvalue 0 of the corresponding Laplacian
matrix Lz equals the number of connected components (blocks) in Z, and thus
the soundness of Theorem 1 has been proved.

Optimization. The problem (3) can be solved by the ALM with Alternating
Direction Minimization strategy. Normally, the representation matrix Z in Eq.
(3) needs to be nonnegative and symmetric, which are necessary properties for
defining the block diagonal regularizer. However, these restrictions on Z will
limit its representation capability. For this reason, we propose a modified model
by introducing an intermediate-term C:

N
o1 2, B 2 .
%1(1312”@(8) (S)CII” + 3 lIC - Z| +7Hv27:k+1/\z(LZ) )

s.t. Z=127%>0,diag(Z) =0

The above two models (Eq. (3) and Eq. (4)) are equivalent when 5 > 0 is
sufficiently large. As will be seen in optimization, a benefit of the relaxation term
||[C — Z||? is that it makes the objective function separable. More importantly,
the subproblems for updating Z and C are strongly convex, leading to final
solutions that are unique and stable.

Note that Zi\[:N—k-&-l Ai(Lz) is a nonconvex term, and by introducing the
property about the sum of eigenvalues, we reformulate it as minw < Lz, W >,
where 0 X W <X I, Tr(W) = k. So Eq. (4) is equivalent to

. 1 2 ﬁ 2 .
Zr71c1:17r‘17v2||<1>(S)—<I>(S)C|| +2HC—ZH + v < Diag(Z1) — Z,W >

st. Z=127">0,diag(Z) = 0,0 < W < I, T{W) = k

The optimization of Eq. (5) involves alternating updates of W, C, and Z. Each
subproblem is convex, allowing for closed-form solutions:
Updating W:

With = argmin < Diag(Z1) = Z, W >, 5.t. 0 X W XL Tr(W) =k  (6)

Updating C: '
CHl = (KK + pT) " YK + BZ) (7)

Updating Z:

ZH = [(A+A")],, where A = A—Diag(diag(A)), A = C—%(diag(W)lT—W)
(®)
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4.2 Forecasting

We consider all windows to be known except the last one, for which we want to
predict the series values. For b sliding windows {W7, ..., W}, we obtain b kernel
representations, each corresponding to a window. It is important to know that
the regime R; discovered from the subseries S, within the p*"(p € [1,b]) window
might not be discovered (i.e., there may be no series exhibiting this regime) in
other subseries (i.e., from other windows). This reveals the variety of regimes in
time series and the demand for a dynamic representation. We predict the kernel
representation for subseries in the next window Wp, via a regression model A,
as follows:

Zpy = )\(Zl, ey Zb) + Wo+1, (9)
where pp41 is the white Gaussian noise for reducing overfitting. Then, we fore-
cast the value of the time series for the next window Wj,; based on the self-
representation property:

Sbi1 = St41Zp+1 (10)

Table 1. Data statistics

Data # of series | Length of series
Music 20 219
Electricity 370 1,462

Chlorine 166 3,480
Earthquake 139 512
Electrooculography | 362 1,250

Rock 50 2,844

In this case, we employ the same regression form to estimate st, i.e., §b+1 =
)‘(Slv ey Sb) + Hp+1-

5 Experiments

5.1 Data

We collected six real-life datasets from various areas. The Music dataset from
GoogleTrend event stream! contains 20 time series, each for the Google queries
on a music-player spanning 219 months from 2004 to 2022. The Electricity
dataset comprises 1462 daily electricity load diagrams for 370 clients, extracted
from UCI?. From the UCR’s public repository®, we obtained four time-series
datasets — i.e., Chlorine concentration, Earthquake, Electrooculography sig-
nal, and Rock. Table 1 summarizes the statistics of the datasets.

1 http://www.google.com/trends/.
https://archive.ics.uci.edu/ml/datasets/.
https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018.
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Fig. 2. The best window size (red line) for the six data sets (Color figure online)

5.2 Experimental Setup and Evaluation

In the kernel representation learning process, we used the Gaussian kernel of the
form IC(S;, S;) = exp(—||S;i — S;|1?/d2,0z), Where dpqaz is the maximal distance
between series. Parameters v in Eq. (3) is selected over [0.1,0.4,0.8,1,4,10] and
set to be v = 0.8 for the best performance.

We evaluate the forecasting performance of the proposed model against seven
different models. Among them, four are forecasting models (ARIMA [3], KNNR
[5], INFORMER |[21], and a state-of-the-art ensemble model N-BEATS [12]), the

other three are RS models (MSGARCH [1], SD-Markov [2] and OrBitMap [11]).

5.3 Regime Identification

In this subsection, we evaluate the capability of our model to identify regimes.
During the learning process, a fixed window slides over all the series, generating
subseries under different windows. We then learn a kernel representation for the
subseries in each window. The quality of our kernel representation depends highly
on how well the time series is split. Due to space limitations, our method for auto-
matically estimating the optimal size of the sliding windows to obtain suitable
regimes using the Minimum Description Length (MDL) technique can be found
in Supplementary. Figure 2 exhibits the selected window sizes for the respective
datasets: the length of 31 (resp., 227, 583, 50, 183, 69) window used for the
Music (resp., Electricity, Chlorine, Earthquake, Electrooculography,
Rock) data.

With these window sizes, we can plot the profile pattern to visualize the
regime. In Fig. 3, each row displays the distinct regimes exhibited by co-evolving
series in the six datasets, respectively. We discovered 4 different regimes in the
Music time series, 3 in Electricity, 4 in Chlorine, 3 in Earthquake, 3 in
Electrooculography, and 5 in Rock. For these real cases, we lack the ground
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truth for validating the obtained regimes. Fortunately, according to the forecast-
ing which depends on the identified regimes, we will be able to better validate
whether the identified regimes are the right ones.

Figure 4 illustrates the forecasted outcomes for six arbitrarily selected time
series from the respective datasets, offering a demonstrative insight into the
notable efficacy of our model in forecasting time series. It is important to note
that this illustration is intended to showcase the proficient results achieved via
our regime-based forecasting, a detailed evaluation of the forecasting ability will
be presented in Sect. 5.4.

Table 2. Models’ forecasting performance, in terms of RMSE, for the nine datasets

Models Forecasting models
ARIMA KNNR INFORMER | N-BEATS
Datasets | Music 6.571 4.021 2.562 0.956
Electricity 2.458 2.683 2.735 1.593
Chlorine 8.361 6.831 3.746 1.692
Earthquake 5.271 3.874 4.326 1.681
Electrooculography | 3.561 3.452 4.562 2.487
Rock 6.836 6.043 5.682 2.854
Models RS models
MSGARCH | SD-Markov | OrbitMap Ours
Datasets | Music 2.641 3.234 1.244 0.663
Electricity 2.425 2.439 1.835 1.644
Chlorine 5.712 3.462 1.753 1.387
Earthquake 4.213 3.573 1.386 1.392
Electrooculography | 3.566 3.571 3.251 1.198
Rock 5.924 4.587 4.571 1.699

5.4 Benchmark Comparison

In this subsection, we evaluate the forecasting performance of our proposed
model against seven different models, utilizing the Root Mean Square Error
(RMSE) as an evaluative metric. Table 2 shows the forecasting performance of
the models. We see that our model consistently outperforms the other models,
achieving the lowest forecasting error on all datasets (except for the Earthquake,
because of the weak correlation between the time series). ARIMA has the abil-
ity to capture seasonality patterns within time series; however, when the various
seasonalities are noncontiguous, the models face difficulties in capturing com-
plex, nonlinear dynamic interactions between time series. Notably, N-BEATS,
the state-of-the-art deep network model, is generally the second-best performer
owing to its ensemble-based strengths. However, it falls short in capturing com-
plex regime transitions within multiple time series, revealing the limitations of



KRL for Time Series Forecasting

261

-
o«
&

Model

Fig. 5. Box Plot of RMSE Values for Each Model Across Datasets

a model geared solely for single time series forecasting. Meanwhile, OrbitMap,
while also regime-aware, is hindered by its necessity for predefined regimes and
struggles with handling multiple time series. Figure 5 illustrates the distribution
of RMSE values for each model across all datasets, and it is evident that our
model achieves the most favourable outcomes overall.

5.5 Ablation Study

We conduct ablation experiments to validate the efficacy of our model’s kernel
representation learning. We focus particularly on the regularization and kernel-
ization techniques employed in (3). Our approach is compared against existing
self-representation learning methods[9] - SSC, LSR, LRR, BDR, EDSC, SSQP,
and SSCE, under varying values of v. The comparative results are illustrated
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in Fig. 6. This comparison clearly demonstrates that our model achieves supe-
rior performance, outperforming the other methods in terms of RMSE across
different datasets for a range of v values.

6 Conclusion

This paper introduces a new approach for modeling non-linear interactions in an
ecosystem comprising multiple time series. This approach enhances time series
forecasting for subsequent periods, thanks to a notable ability which is its capac-
ity to identify and handle multiple time series dominated by various regimes. This
is accomplished by devising a kernel representation learning method, from which
the time-varying kernel representation matrices and the block-diagonal property
are utilized to determine regime shifts. Furthermore, our model automatically
uncovers various hidden regimes without requiring any prior knowledge about
the series under investigation. Validation with real-world datasets has shown
that our model surpasses existing models in terms of forecast accuracy.
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