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Abstract—The identification and prediction of complex be-
haviors in time series are fundamental problems of interest in
the field of financial data analysis. Autoregressive (AR) model
and Regime switching (RS) models have been used successfully
to study the behaviors of financial time series. However, con-
ventional RS models evaluate regimes by using a fixed-order
Markov chain and underlying patterns in the data are not
considered in their design. In this paper, we propose a novel
RS model to identify and predict regimes based on a weighted
conditional probability distribution (WCPD) framework capable
of discovering and exploiting the significant underlying patterns
in time series. Experimental results on stock market data, with
200 stocks, suggest that the structures underlying the financial
market behaviors exhibit different dynamics and can be leveraged
to better define regimes with superior prediction capabilities than
traditional models.

I. INTRODUCTION

The basic idea that a time series exhibits certain behaviors

and transits between different states has been at the core

of many time-series models. In finance, studying the market

behaviors is of great interest since it allows to establish links

between market dynamics and the general state of the market.

Many phenomena observed in the financial market, such as fat

tails, volatility clustering and co-movement, have been studied

to explore the financial behaviors in various financial markets

[1][2][3]. Regime switching models [4][5] have been used

to characterize these complex behaviors in a wide range of

applications. These studies suggest that structural breaks in the

time series lead to a regime switch, where a regime expresses

some kind of behaviors that explains the market dynamic over

a period of time.
In practice, certain characteristics of time series can be hard

to observe when time series exhibit non-linearity, mixing or

noise. In such cases, choosing the right RS model is difficult.

This is true especially when the dynamic of the time series is

unknown. Adoption of a model, such as MSGARCH, requires

completion of the difficult tasks of model specification, while

a wide variety of variance models exists [7]. Moreover, model

evaluation is also a challenge since the evaluation functions in

these models do not provide consistent assessment of model

quality [15]. Finally, the existing models do not provide easy-

to-interpret patterns representing the dynamics of the discov-

ered regimes. Given these difficulties, the current RS models

fail to provide a satisfactory solution to regime modelling.
In this paper, we propose a novel pattern-based regime

switching model that evaluates regimes based on explicit pat-

terns discovered using a variable order Markov chain created

from a time series. The key contributions of this paper can be

summarized as follows:

1) Our novel clustering-based approach allows discovering

regimes with explicit representations using a variable-

order Markov chain.

2) Our approach is able to learn the process governing

regime switches by regime without specifying it explic-

itly.

3) Our experimental evaluations show that our model is

superior in forecasting volatility.

The remainder of this paper is organized as follows: In

Section II, we discuss the rationale for approaching the prob-

lem differently than using traditional RS models. Section III

presents the proposed model. In Section IV, we present an

empirical evaluations of our proposed model using time series

of 200 stocks from the financial market. Finally, Section V is

devoted to the discussion of our results and future work.

II. BACKGROUND AND MOTIVATION

The widely used RS model, introduced by Hamilton [6],

characterizes a time series behaviors in different regimes. It is

assumed that regime switches are governed by an unobservable

state variable that follows a fixed-order Markov chain process.

The process governing regime switch is usually characterized

by multiple parameters such as the distribution’s type and

the function’s parameters of the process itself. Techniques

such as maximum likelihood are used to estimate the model

parameters. The main drawbacks of these conventional RS

models are as follows:

1) Conventional RS models assume that the time series

is stationary. This assumption is known to be false for

financial time series [10].

2) The Markov chain, determining regimes transition prob-

abilities, is assumed to be completely independent from

all other parts of the model, which is unrealistic in many

cases [13].

3) To the best of our knowledge, there is no published

work on the use of a variable order Markov model to

study regime switch and transition probabilities between

regimes. When using a fixed-order Markov process,

the model assumes that the number of significant past

observations is always the same for a market regime,

which is not necessarily true.
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4) It is often difficult to interpret the output of a con-

ventional RS model given the challenge of identifying

market’s state robustly as noted in [11].

The goal of this work is to propose an alternative way of

evaluating regimes in time series. Instead of modeling regime

switch by exploiting dynamics of a latent variable, we model

regimes from underlying patterns in the time series. To this

end, we propose a novel regime switching framework with

a variable-order Markov chain, which generates behavioral

patterns for each regime, allowing us to better understand their

characteristics and to predict changes between regimes.

III. THE WCPD-RS MODEL

In this section, we present the weighted conditional prob-

ability distribution regime switching model (WCPD-RS) in

detail. Unlike conventional RS models, we analyze the regime

switch by investigating the categorical sequence obtained by

transforming the time series. The overall pipeline of WCPD-

RS, shown in Fig. 1, is divided into three main parts. In the first

part, we transform the time series into categorical sequences

that will be used for regime detection. In the second part,

we detect regimes using Model-based Categorical Sequence

Clustering algorithm (MCSC) [14]. The final part is the regime

prediction framework derived from MCSC, which highlights

the properties of each regime, such as the regime switch

probabilities.

A. Time series transformation

We transform a time series X = {X1 . . . Xt}, where t is the

number of time interval observed, into a categorical sequence

S = {s1 . . . st} to extract significant patterns of categories.

This transformation allows discovery of more explicit patterns

to explain regime switch drivers. By identifying statistically

significant patterns, we will be able to find why certain

dynamics are more likely to arise based on the market’s state.

We introduce a categorical classifier that has been developed

jointly with an investment industry expert to transform the

time series into a categorical one.

Our classifier transforms a daily OHLCV time series, i.e.,

Open, High, Low, Close Prices and Volume indicators, into

a categorical time series for volatility forecasting with eight

possible categorical values, Ω = {A,B,C,D,E,H, I, L}
such that each data point si where i ∈ [1, t] takes one of

the possible values. Each value of Ω corresponds to a type of

particular day: A = unexciting days, C,D = ”clear up and

down days” and E,H, I, L = ”abnormal days”. The classifier

is summarized in algorithm (1) where we denote Xi,features

as the value of the features of the time series at time interval

i. The following features are computed before classification:

1) The log daily return (Log return).

2) A measure of price fluctuation: Intraday swing =
2×(Hight−Lowt)

Hight+Lowt
where Hight is the highest price

reached during the trading day t, whereas Lowt is the

lowest price reached during that same day. We identify

the 50th quantile of the Intraday swing given the

distribution of all Intraday swing calculated Q50IS .

3) A normality measure for volume (Normal volume)

evaluated as the volume divided by the daily volume

mean of the last 21 days period. From this mea-

sure, we identifiy the 50th quantile (Q50NV ), and the

80th quantile (Q80NV ) given the distribution of all

Normal volume calculated.

Algorithm 1 Stock classifier

Input: X = {X1 . . . Xt}
Output: S = {s1 . . . st}

for i = 1 to |X| do
if Xi,volume < Q50NV then
si = A

else if Xi,volume < Q80NV then
si = B if Log return≥ 0 else C

else
if Xi,Log return ≥ 0 then

if Xi,intraday swing ≥ Q50IS : si = D
else if Xi,intraday swing < Q50IS : si = E
else : si = L

else
if Xi,intraday swing ≥ Q50IS : si = H
else if Xi,intraday swing < Q50IS : si = I
else : si = L

B. Modeling regime behavior

To model each regime, we use the MCSC hierarchical

clustering algorithm from Xiong & al. work [14] to cluster

subsequences of S retrieved by using a sliding window tech-

nique. MCSC is a top-down divisive algorithm implemented

through a two-tier cascade optimization framework. The first

tier of the framework is built from the first-order Markov

model implemented via a weighted fuzzy indicator (WFI)

matrix for the purpose of cluster splitting and optimization,

while the second tier is built from the WCPD model for the

purpose of cluster refinement and pattern discovery. The latter

is a variable order Markov model and allows the discovery

of statistically significant patterns of variable lengths for

estimating the similarity between a sequence and a cluster.

These patterns are retrieved natively in the WCPD model

when building the generative model for each cluster, i.e.,

the conditional probability distribution (CPD) of each cluster

by means of the probabilistic suffix tree (PST). We refer to

the Xiong & al. work [14] for technical explanation of the

algorithm to model individual regimes.

Contrary to the indication in [14], two adjustments are made

to the WCPD model and are summarized in algorithm (1).

First, we reconstruct the PST at every iteration of the WCPD

but select the memory subsequences for the optimization

procedure only at the beginning of the optimization. The

reason for this strategy is that we have observed that the

number of memory subsequences may change greatly after

pruning, leading to convergence instability in the WCPD

model. Second, we do not enforce the constraint that the PST

is a full probabilistic tree in which every node other than
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Fig. 1. Pipeline of the WCPD-RS model: The process starts by transforming the time series into a set of categorical sequences using a sliding window
technique and a classifier: S′ is a subsequence of S and j is the number of subsequences produced from S. Then the WCPD model is used with the MCSC
algorithm to cluster the sequence. Here Δstrategy is the cluster-splitting strategy, which is applicable only if more than two clusters are created. The prediction
framework is then derived from the clusters to evaluate the likelihood of next categorical class and predict the next regime.

the leaves has |Ω| children because we wish our model to

be built solely from observed transitions, without having to

induce passing probabilities to account for unobserved state

transitions. This has no impact on the WCPD model for

pruning, but adds complexity to the predictive framework

which is addressed in the next section.

The resulting clusters from the WCPD model are calculated

by evaluating the statistical center parameter for each cluster

Ck as follows:

ρλk
(s|σ) =

(∑
Si∈Ck

|Si|P̄ 2
Si
(s|σ)∑

Si∈Ck
|Si|

)1/2

(1)

where P̄Si(s|σ) = oc(σs, Si)/|Si|, oc(σs, Si) is the number

of occurrences of the memory subsequence σ followed by s in

sequence Si and |Si| is the length of sequence |S|. To measure

the dissimilarity between Si and Ck, we use the following

measure:

dWCPD(Si, Ck) =
∑
σ

∑
s∈Ω

(
P̄ 2
Si
(s|σ)

ρλk
(s|σ) + ρλk

(s|σ)
)

(2)

where σ is a statistically significant memory subsequence

shared by all models λ, Ω is the alphabet of categorical value,

P̄Si
(s|σ) is the weighted conditional probability of occurrence

of symbol si in sequence Si given memory subsequence σ and

ρλk
(s|σ) is the statistical parameter of the WCPD model λk

on σ defined in (1). These two functions are necessary for the

WCPD model and are used in the predictive framework.

C. The Predictive Framework

The basic idea behind the predictive framework is that by

using the PST of each cluster produced with WCPD, we

can predict the behavior of the associated regime. The PST

contains the observed CPD and can be used as an estimate

of the ”real” CPD of this regime, such that we can model

the regime as a stochastic process. To measure how likely a

sequence of events is being produced by a regime, we combine

both the dissimilarity of the WCPD model (2) between the

sequence and the regime and the probability that the sequence

of events was produced by the CPD of the regime.

The probability that a sequence Si occurs given a regime

Rk can be calculated as P (Si|Ck) =
∏|Si|

j=1 P (sij |λk) where

|Si| is the length of sequence Si, λk is the statistical model

of cluster Ck and P (sij |λk) is the probability of generating

symbol sij given λk, i.e., the CPD of Ck. However, this

approach is sensitive to noise caused by statistically non-

significant transitions. Alternatively, the dissimilarity measure

in equation (2) can be used to determine how a sequence is

similar by considering the occurrences of statistically signifi-

cant patterns only. We combine the two measures to define a

similarity function for estimating the likelihood that Si belongs

to regime Rk as follows:

sim(Si, Rk) = P (Si|Ck)× 1

dWCPD(Si, Ck)
(3)

The inverse of dWCPD(Si, Ck) acts as a confidence level for

Si being in Rk. Finally, by converting the similarity measures

in 3, we define the probability P (Si|Rk) that sequence Si

belongs to regime Rk as follows:

P (Si|Rk) =
sim(Si, Rk)∑k−1
i=0 sim(Si, Ri)

(4)

To forecast the following state given a sequence, we con-

sider the CPD of each regime and evaluate which state is

most likely to occur. In the context of market uncertainty, it

is expected that a sequence is likely to be produced by more

than one regime. To weight the importance of each regime’s

PST, we used the probability of a sequence being generated by

a regime defined in (4). However, because we do not enforce

the PST to be a full tree, an additional step of normalization

is required prior weighting the PST to ensure that the sum of

probability of each PST is equal to one. Thus, the probability

of a state occurring after a given sequence is evaluated as

follows:

P (s|Si) =

∑
k∈K P (Si|Rk)P (s|Si, Rk)

K
(5)

where s ∈ Ω, P (Si|Rk) is defined in (4), P (s|Si, Rk) is

retrieved by evaluating the probability that s occurs given

preceding subsequence Si from the CPD of regime Rk. The
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state s retained for prediction is the one most likely to occur

next.

To predict whether a regime switch is likely to occur,

we evaluate the probability that the predicted subsequent

sequence, which we will call ”the next sequence” for sim-

plicity, will be allocated to a different regime. There can be a

number of next sequences because there is a limited amount

of possible states s. By measuring the likelihood of each state

occurring with (5) and by considering that a sequence is likely

of being associated to a cluster Ck if its WCPD distance

dWCPD(Si, Ck) is the smallest compared to other clusters, we

are able to measure the probability that the next sequence will

be associated to a regime. This evaluation is done as follows:

P (Cj|Si) =
∑
s∈Ω

f(s, Si, Cj) (6)

f(s, Si, Cj) =

{
P (s|Si), if min(dWCPD(S′i+1, Cj))

0, Otherwise
(7)

where Si and Cj are the sequence and cluster of in-

terest, S′i+1 is the 1-day ahead forecast sequence and

min(dWCPD(S′i+1, Cj)) is true if its WCPD distance to Cj

is the smallest compared to other clusters. Equation (6) and

(7) are illustrated in Fig. 1

When splitting S using a sliding window technique, it is

possible that multiple subsequences overlap at ti but belong

to two different regimes. This can be ambiguous as it is

unreasonable to use one subsequence for representing ti and

evaluate the probability of being in a regime at ti. To solve

this, we calculate the probability of being in a regime at a given

time ti by considering the probability of all subsequences that

crosses ti. We give more importance to the sequence that is

centered at ti by assigning weights to each sequence based on

the distance between the middle point of the sequence and ti.
Then we calculate a weighted average of the probabilities for

each regime given this set of subsequences. The probability

of being in a regime at time ti, i.e. P (ti, Rk), is evaluated as:

P (ti, Rk) =

∑
S∈ti

1
dist(S)+1P (S|Rk)∑
S∈ti

1
dist(S)+1

(8)

where
∑

S∈ti indicates summation on all the sequences cross-

ing ti,
1

dist(S)+1 is the weight attributed to the sequence

and dist(S) is the length of time interval between ti and

the center of the sequence. Compared to traditional regime

switching models, this approach is equivalent to calculating

the smoothing probabilities.

To predict a numerical value instead with the WCPD-

RS model, we can approximate the volatility based on the

previous realized volatility observed and the state predicted.

The strategy consists of using the predicted state from the

WCPD-RS predictive framework and selecting the realized

volatility based on the mean of the previous observed volatility

in that window. If the predicted state s is observed in the last

available window, we use the mean of the realized volatility for

each days associated with this state. If s was never observed,

we use the mean of the last window. In the case where s was

previously observed but was not present in the last window,

we use the mean of all previous day classified as s that was

used to train the model.

IV. EMPIRICAL RESULTS: A STUDY OF THE STOCK

MARKET

In this section, we describe experiments conducted to verify

the effectiveness of the proposed WCPD-RS model on finan-

cial datasets.

A. Datasets

To evaluate our model, we used 200 stocks from the SP500

divided into two datasets. The first dataset, composed of daily

OHCLV (open, high, close, low, volume) data from 2000-01-

03 to 2018-02-16, was used only for training the models. The

second, composed of intra-day market hours OHCLV data

from 2017-09-11 to 2018-02-16, was used for validation of

the models. The daily data is available to the public on Yahoo

Finance website1 and the intra-day data was retrieved from

a Kaggle dataset2. Both datasets are adjusted for splits and

dividends.

The value of interest to predict is the implied daily volatility

of the stock. Since the true volatility is unobservable, we

estimated its value with an estimator based on the realized

volatility. We used the classical volatility estimator, defined as

follows, on the intra-day data:

σt =

√√√√ n∑
t=1

(rt)2 (9)

where rt = ln(ct/ct−1) and ct is the closing price at time

t. We follow the recommendation of Liu & al. [16] and used

5-minute intra-day data to measure the volatility.

B. Experimental Methodology and Evaluation Criteria

To verify the effectiveness of the proposed WCPD-RS

model, we evaluated the volatility prediction performance of

WCPD-RS against three different RS models implementation

available in D. Ardia & al. [17]: MSGARCH, MSGJR-

GARCH, MSTGARCH. A Student distribution was selected

for all RS models to take into account the skewness of

the return observed in financial time series. We used the

predictive framework of the WCPD-RS model to predict a

state from which we approximated the volatility based on the

past realized volatility. For all models, we used daily OHLCV

data of stocks from 2001-01-03 to 2017-10-09 for the initial

training and evaluated their predicting accuracy from 2017-10-

09 to 2018-02-16 (90 days). We compared all the models by

measuring the 1 day ahead volatility forecast accuracy. All the

models were initially trained from 2001-01-03 to 2017-10-09

and incrementally updated after each forecast by re-training

1https://ca.finance.yahoo.com/
2https://www.kaggle.com/borismarjanovic/daily-and-intraday-stock-price-

data
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the model. To complement our analysis, we calculated the

state prediction accuracy of our model and showed a sample

of patterns identified in the stock of Apple Inc. (NASDAQ:

AAPL).

To train the WCPD-RS model, we split the sequence using

a sliding window of 21 days, along with 3-days overlapping.

Considering the limited amount of intra-day data available (6

months) and the strategy used for volatility forecasting, using

a longer sliding window would reduce the amount of data

available for evaluation. On the other hand, a sequence shorter

than 21 days sequence might yield more sporadic regimes

which are expected to be modeled by smaller patterns. The

purpose of the 3-days overlap was to reduce the number of

sequences used for training. The same evaluation parameters

were used for all datasets.

We used 4 error functions and 1 directional accuracy

measure to measure the performance on 1-day-ahead out-

of sample prediction for all models. The error functions

used are the maximum square error (MSE), the maximum

absolute error (MAE), the rooted mean square error (RMSE),

the mean absolute percentage error (MAPE) and the mean

directional accuracy (MDA). The definitions of all the er-

ror functions are as follows: MSE = 1
n

∑n
i=1(Yi − Ŷi)

2,

MAE = 1
n

∑n
i=1 |Yi − Ŷi|, RMSE =

√
1
n

∑n
i=1(Yi − Ŷi)2,

MAPE = 1
n

∑n
i=1

|Yi−Ŷi|
Ŷi

, MDA = 1
n

∑n
i=1 1 if sign(Ŷi −

Ŷi−1) == sign(Yi−Yi−1). Yi is the realized volatility value,

Ŷi the predicted value and n is the number of predictions;

sign a sign function and 1 is an indicator function.

C. Results:

First, we show by a concrete example how patterns are

represented in each regime and what the advantages such a

representation provides. Let’s look at patterns in two regimes

for a financial asset: the Apple stock is presented in Table I. We

observe that each regime has its own particular patterns that

form some easy-to-interpret characteristics. Regime 1 contains

longer patterns composed of As compared to Regime 2. An

example of such patterns is AAAAAAAAB versus AAAAAAB.

According to the definition of A in subsection III.A, this means

that Regime 1 tends to have longer ”unexciting” days. If we

examine short patterns in both regimes, we can notice that

sub-patterns BC and CB rarely occur in Regime 1. Moreover,

they never occur at the beginning of a pattern in Regime 1.

However, these two sub-patterns are omnipresent in Regime

2. Recall that the sub-patterns BC and CB imply two clear up-

and-down and clear down-and-up days respectively. Regime 1

contains few patterns involving transitions to or from rarely

occurring days represented by D,E,H,I and L, while Regime 2

contains plenty of the patterns involving one or two such days.

Recall that D,E,H,I and L correspond to rarely occurring days

involving either an abnormally high volume or high volatility.

All these suggest that Regime 2 is a high volatility regime

as compared to Regime 1. The three main observations above

suggest that the dynamics of the time series vary greatly over

the time series (In this example, regime 1 is composed of 597

subsequences and regime 2 is composed of 917 subsequences).

Regime 1: Regime 2:
AAAAAAAAA,
AAAAAAAAB,
AAAAAAAAC,
AAAAAAAAD,
AAAAAAAAE,
AAAAAAAAI,
AAAAAAAL, ABA,
ABB, ABC, ABD,
ABE, ABI, ABL, ACA,
ACB, ACC, ACD,
ACE, ACH, ACI, ACL,
BAA, BAB, BAC, BAI,
CAAA, CAAB, CAAC,
CAAD, CAB, CAC,
CAE, CAL, CCA,
CCB, CCC, CCE,
CCH, CCI, CCL

AAAAAAA, AAAAAAB,
AAAAAAC, AAAAAAD,
AAAAAAH, AAAE, AAAI, AAL,
ABA, ABB, ABC, ABD, ABE,
ABH, ABL, ACA, ACB, ACC,
ACD, ACH, ACI, ACL, BAA, BAB,
BAC, BAH, BAI, BBA, BBB, BBC,
BBD, BBE, BBH, BBI, BCA, BCB,
BCC, BCD, BCE, BCH, BCI, BCL,
CAA, CAB, CAC, CAD, CAE,
CAH, CAL, CBA, CBB, CBC,
CBD, CBE, CBH, CBI, CBL, CCA,
CCB, CCC, CCD, CCE, CCH, CCI,
CCL, DA, DB, DC, DD, DE, DH,
DI, HA, HB, HC, HD, HE, HH, HI,
HL

TABLE I
PATTERNS FOUND IN AAPL STOCK DATA FROM 2001-01-03 TO

2018-02-16

The forecasting performance on the 1-day ahead volatility

for the 200 stocks is presented in Figure 2 . The figure shows

that, on average, WCPD-RS is better at forecasting the actual

value most of the time, with a lower variance. For each error

function, the median of WCPD-RS is lower than with any

other model except in the case of MAPE, where GJRGARCH

(30.13%) won by 0.13%. The number of outliers forecast in

WCPD-RS is smaller than for any of the other models. Our

model is more consistent and in general similar to, if not better

than, other RS models. The results are encouraging given a

classes prediction of 44% with a standard deviation of 6% for

1 day-ahead forecast while the set of top-3 most probable state

contains the actual state at least 75% of the time. Given that

there are 8 possible discrete states to predict, such a level of

accuracy confirms existence of predictive power of the WCPD-

RS framework although GARCH-models are better suited to

predict a numerical value of interest.

V. DISCUSSION

Market behaviors are constantly studied to assess systemic

risks, financial stresses and other financial behaviors to make

better investing decisions. State-of-the-art RS models have

been used to model the dynamics of time series but fail

to provide easy-to-interpret patterns representing regimes. By

identifying the patterns that describe behaviors, we have

developed a novel approach for modeling regimes by exploring

the underlying structure of time series and by providing a more

explicit interpretation of changing dynamics in time series.

In this paper, we have presented a new RS model (WCPD-

RS) that models regimes explicitly by extracting the underly-

ing patterns of the time series. The model operates by clus-

tering segments of a time series and extracting significant un-

derlying patterns to build a conditional probability distribution

for each regime. Using 200 time series for the validation, we

observed that our model outperformed traditional RS models

in volatility forecast accuracy except in directional accuracy.
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Fig. 2. Volatility forecasting accuracy for 200 stocks from the SP500.

The patterns observed explicitly show that the dynamics of a

time series change over time.
The approach proposed here has multiple advantages over

traditional regime switching models:

• WCPD-RS extracts natively significant patterns from time

series and makes it easy to distinguish regime’s dynamics.

• The transition probabilities are evaluated using a variable

order Markov chain and are directly dependent on the

current and significant past states.

• The model does not require to provide a model specifi-

cation of a non-observable variable to model regimes.

WCPD-RS thus addresses the main difficulties of traditional

RS models, as the complexity is reduced to defining what days

are of similar interests. It is worth mentioning that the com-

putational cost of this methodology can be greater than that of

some traditional regime switching. Furthermore, traditional RS

models may be more appropriate for characterizing different

statistical properties of a value of interest but our model excels

at extracting explicit behaviors involving multiple variables.
The encouraging results of this work suggest that the behav-

ior of a time series can be learned from the underlying struc-

ture of that time series. Future work is needed in incorporating

wild-card patterns into the WCPD-RS model. Furthermore,

more experimental work is needed to investigate the method’s

performance with other models beyond two regimes. This is

an interesting avenue for future work since gaining insights

into the intricacies of more complex regimes is of interest to

financial practitioners.
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