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Abstract. Regime switching analysis is extensively advocated in many
fields to capture complex behaviors underlying an ecosystem, such as the
economic or financial system. A regime can be defined as a specific group
of complex patterns that share common characteristics in a specific time
interval. Regime switch, caused by external and/or internal drivers, refers
to the changing behaviors exhibited by a system at a specific time point.
The existing regime detection methods suffer from two drawbacks: they
lack the capability to identify new regimes dynamically or they ignore the
cross-sectional dependencies exhibited by time series data for the fore-
casting. This promoted us to devise a cluster-based regime identification
model that can identify cross-sectional regimes dynamically with a time-
varying transition probability, and capture cross-sectional dependencies
underlying financial time series for market forecasting. Our approach
makes use of a nonlinear model to account for the cross-sectional regime
dependencies, neglected by most existing studies, that can improve the
performance of a forecasting model significantly. Experimental results
on both synthetic and real-world dataset demonstrate that our model
outperforms state-of-the-art forecasting models.

Keywords: Regime switch analysis · Cross-sectional regime
identification · Financial market forecasting

1 Introduction

Financial markets may dynamically exhibit abrupt behavior changes. While
some of these may be transitory, often the time-evolving behavior of market
prices may persist over some specific time intervals [3,9]. For example, the mean,
volatility, and correlation patterns in stock returns may change dramatically in
a fluctuating stock market [6,20]. These sudden changes or structural break can
be viewed as regime switches, some of which may be recurring and some of which
may be permanent. Such switches are prevalent in the dynamic financial mar-
ket. Regime switching analysis [12,13] is extensively advocated for its ability to
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capture these sudden changes or structural breaks in market behaviors hidden
in financial data, making it a promising approach in financial analysis and mar-
ket studies. Understanding the phenomenon of how new dynamics of prices and
fundamentals persist for a certain length of time after a change helps explore
financial behaviors for market forecasting.

Due to their ability to parsimoniously capture stylized behaviors of many
financial series, including fat tails, persistently occurring periods of fluctuation
followed by periods of low volatility, skewness, and time-varying correlations,
regime switching models continue to gain in popularity [2,3,12]. In finance, a
regime can be defined as a specific group of complex patterns that share the
same characteristics in a specific time interval. Regime switching refers to the
changing behaviors exhibited by time series transiting from one regime to another
at a specific time points; such changes can be caused by external and/or inter-
nal drivers. Existing regime models are designed to predict the likelihood of a
structural break resulting in a regime switch that is driven by a combination of
driving variables, corresponding to pressures from within or outside the market
[4,5,8]. Most, however, handle only single time series, and are not capable of
dealing with multiple time series, which is more complex due to the statistically
cross-sectional correlations underlying the multiple time series. Such is often the
case with financial data, for example, market prices often have positive and nega-
tive correlations to one another, and stocks as broad asset classes have exhibited
prolonged periods of negative correlation [11].

Fig. 1. An example of a multiple time series set consisting of 3 distinct regimes.

Though some regime models [14,23] have been proposed for modeling mul-
tiple time series, most of them suffer from issues such as having to specify the
number of regimes and lacking the capability to identify regimes dynamically.
This prevents them from achieving good performance, since regimes themselves
are often thought of as approximations to underlying states that are unobserved
and may arrive at any future time in the time-varying financial market, such as
financial crisis. Moreover, time series may not synchronize with regime switching.
For example, in Fig. 1, the two sub-sequences {S3, S4} belong to regime R2 and
the others belong to regime R1 in window Wi. However, most existing regime
models [14,23] would identify the whole set of sub-sequences in window Wi (resp.
Wj and Wk) as regime R1 (resp. R2 and R3), and miss out on the regimes of
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sub-sequences {S3, S4} ∈ R2 in window Wi, {S1, S4} ∈ R1 and {S3, S5} ∈ R3 in
window Wj , and {S1, S7} ∈ R2 and {S2, S5} ∈ R1 in window Wk. Consequently,
these models can not achieve satisfactory forecasting performance.

To address the issues above, we propose a financial market forecasting model
utilizes clustering-based cross-sectional regime identification model. We proposed
clustering-based regime identification model can identify cross-sectional regimes
dynamically along with a forecasting process based on a time-varying transi-
tion probability matrix, to address the problem of specifying a fixed number of
regimes and switching among in a fixed set of regimes with a static transition
probability matrix. We then devise a non-linear model to capture cross-sectional
regime dependencies (as presented in Fig. 1) on multiple time series for financial
market forecasting. The significance of this work can be summarized as follows:

– We propose a clustering-based cross-sectional regime identification model on
multiple time series, which allows the identification of multiple cross-sectional
regimes dynamically, with a time-varying transition probability matrix, along
with the forecasting process in the time evolving financial market, bypassing
the need to specify a fixed number of regimes that switch within a fixed set
of regimes with a static transition probability matrix.

– We propose a non-linear financial market forecasting model relying on a
clustering-based regimes identification model, which can capture the cross-
sectional dependencies among financial time series to generate forecast for
the time-evolving financial market.

– We validate our model by implementing it on synthetic and real-world
datasets, comprehensive experimental results, compared with state-of-the-
art forecasting algorithms, demonstrate the suitability and promising perfor-
mance of the proposed model.

The remainder of this paper is organized as follows. In Sect. 2, we dis-
cuss related work on financial market forecasting. Section 3 presents the pro-
posed forecasting model in detail. Section 4 provides comprehensive experimen-
tal results on synthetic and real-world data and compares the results with other
baselines. Finally, conclusions are given in Sect. 5.

2 Related Work

Financial time series forecasting is undoubtedly a hot topic for finance
researchers in both academia and the finance industry due to its potential finan-
cial gain. Recent literature reports a number of methods applied to financial time
series forecasting, including statistical models such as VARMA [20], TRMF [29]
and the GARCH family models [2], However, most of these methods are based
on linear equations, which are incapable of modeling financial data governed
by complex non-linear dynamic patterns. Methods based on deep learning and
graph neural networks [9,17,19,27,31] have also been proposed for financial time
series forecasting, due to their capability of exploiting long-term and/or short-
term dependencies and non-linear dynamic patterns underlying complex data.
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Though these approaches can achieve relatively good performance, at the cost
of high time complexity due to the overwhelming number of parameters, they
are lacking in terms of model interpretability.

On the other hand, among the existing models employed in computational
economics and econometric time series analysis, regime-switching models have
proved the most preferable, due to their ability to capture non-linear patterns
in the market, coupled with heightened model interpretability [12]. Boudt et al.
[7] proposed a two-regime model with two state process for funding and market
liquidity and TED spread. Alan et al. [1] proposed a multi-regime model to
forecast the impact on volatility in global equity markets during the COVID-19
pandemic. Mahmoudi et al. [21] proposed a Markov regime-switching model for
detection of structural regimes to analyze the impact of the crude oil market
on the Canadian stock market. These methods require to specify the number
of regimes manually. Sanquer et al. [25] proposed a hierarchical Bayesian model
for automatically identifying hidden regimes. Note that all of these methods are
focused on single time series with a static transition probability matrix, and can
not be easily applied on multiple time series.

To model multiple time series, Hochstein et al. [14] proposed a regime switch-
ing vector autoregressive model that can deal with the changing dependency
structures of multivariate time series. Matsubara [23] proposed a regime shift
forecasting model on co-evolving data streams. Though it can identify regimes
dynamically, it can not capture multiple regimes in one slide window as shown in
Fig. 1. Tajeuna et al. [28] proposed a regime shift model for multiple time series
forecasting, but it focused on regime identification on discontinuous windows
and ignore continuity of time series. Overall, many authors have contributed to
advances in handling cross-sectional regime identification on multiple time series,
but it remains a challenging task, as many issues have not yet been addressed.

3 The Proposed Model

In this section, we give an overview of the proposed model, followed by detailed
description of the cross-sectional regime identification, model description and
estimation, and financial market forecasting.

3.1 Overview of the Proposed Model

This subsection gives an overview of the proposed financial market forecasting
model relying on clustering-based cross-sectional regime identification, using the
scenario shown in Fig. 2. We start by identifying regimes via clustering methods
from the first slide window, where the optimal number of clusters in each window
is determined by a silhouette score [24], and we then build a non-linear model on
each of the identified regimes and obtain the regime parameters and transition
probability. Finally, we make a forecast based on a non-linear regime model.
Forecasting is performed on the window at the next timestamp. At this iteration
step, we need to evaluate whether or not the regimes identified in the window
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exist in the regime database (RB) by comparing with their cluster centers. If
they exist, we need to add the data to the corresponding regime and update the
regime parameters; if not, we will add them to the regime database and estimate
the regime parameters. The scenario of the proposed model is shown in Fig. 2.

Fig. 2. Overview of the proposed model.

3.2 Cluster-Based Regime Identification

To identify the regimes in each slide window, we use a fuzzy C-Means to cluster
time series to reveal the available structures within the data. Each of these
structures is defined as a regime that shares some common patterns hidden in
the data. To overcome the variable bias in time series data, we here used an
extended FCM [18] of squared Euclidean distance to control the impact of each
variable in evaluating the similarity between time series, the distance between a
time series xi with length L and a cluster center ck is defined as follows:

d2(xi, ck) =
L∑

j=1

λj ||xij − ckj ||2λj ≥ 0,

L∑

j=1

λj = 1 (1)

where λi is the importance of the ith variable, and the larger the value of λi,
the greater the importance of the ith variable in the clustering process. This
approach, to some extent, balances the noise underlying the data, achieving
better clustering results. The coefficient λj , (1 ≤ j ≤ L) can be estimated by
Particle Swarm Optimization (PSO) algorithm, which is a tool for searching
for optimal values by using a flock of particles, further details can be found in
[15,30]. The objective function for the Sum of Error (SE) is defined as follows:

SCE =
K∑

k=1

N∑

i=1

um
kid

2(xi, ck) (2)

where K is the number of clusters, m(m > 1) is the fuzzification coefficient, and
N is the number of time series. U and ci are the partition matrix and center
of the ith cluster, respectively. By optimizing the objective function Eq. 2, the
partition matrix and cluster centers can be calculated as follows:

vk =
∑N

i=1 um
ikwi∑N

i=1 um
ik

Uki =
1

∑K
m=1(

||ck−xi||
||ck−xi|| )

2/(m−1)
,m > 1 (3)
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Thus, we can identify the regimes using the method presented above, and then
build non-linear regime models based on these identified regimes, optimize the
parameters of the regime models and estimate the transition probability. Finally,
we make market forecast based on the regime models.

3.3 Regime Modeling and Transition Probability Estimation

The clustering approach described above only allows use to identifying regimes;
that is; groups of time series which share similar patterns. For a better fore-
casting, we need to build an effective non-linear regime model on these clusters.
Based on the work presented in [23,26], we can build a single non-linear regime
model on each cluster in order to make a forecast. Thus, the non-linear regime
model is defined as follows:

ds(t)
dt

= μ + Gg(s(t)) + Ff(s(t)) (4)

v(t) = εk + Es(t) (5)

where s(t) is a hidden vector that evolves over time and describes the potential
behaviors in the corresponding regime, and v(t) is the actual observed value.
ds(t)/dt denotes the derivative with respect to time t. g(·) is a linear function,
while f(·) is non-linear. Here, μ, G and F describe the potential activities s(t),
capturing linear and non-linear dynamic patterns of the regime. For parameters
optimization, readers are referred to [23].

Regime transition probability describes the likelihood that the current regime
stays the same or switch to another. In fact, we need to investigate whether the
regimes in one window will change in the subsequent window or not. Rather than
calculating static transition probabilities as elaborated in existing model, we can
track the regime transition trajectory of each time series; the regime transition
from regime Ri to regime Rj can be estimated as follows [28]:

Q1(i, j) =

⎧
⎨

⎩
0 if

∑K
i=1

∑K
j=1 ℵ(i, j)N(i, j) = 0

∑K
k=1 ℵ(i,k)N(k,j)

∑K
i=1

∑K
j=1 ℵ(i,j)N(i,j)

else
(6)

where ℵ(i, j) = |N (Ri,Rj)|
N is the risk of suddenly switching from regime Ri to Rj ,

while N(i, j) = |Ni∩Nj |
|Ni∪Nj | is the probability of switching from Ri to Rj . N (Ri, Rj)

is the number of time series appearing in the trajectory from regime Ri to Rj for
the two windows. Ni and Nj are the numbers of time series present in regimes
Ri and Rj , and N is the total number of time series. To further improve the
above estimate, we also consider the difference between two cluster centers ci
and cj in clustering-based regime identification: Q2(i, j) = 1

|ci−cj | for i �= j

otherwise Q2(i, j) = 1
|ci| ensuring the probability of staying at the same regime,

and the effect of si(t) and sj(t) that describes the potential behaviors in regime
Ri and Rj : Q3(i, j) = 1

|si−sj | for i �= j otherwise Q3(i, j) = 1
|si| . All of these are
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the underlying drivers that may result in a regime switch. Thus, the transition
probability Q of switching from regime Ri to regime Rj can be defined as follows:

Q(i, j) = Q1(i, j)
Q2(i, j)∑k
i=1 Q2(i, j)

Q3(i, j)∑k
i=1 Q3(i, j)

(1 ≤ i, j ≤ K) (7)

Note that we can get the regime transition probability of each time series occur-
ring within each slide window.

3.4 Financial Market Forecasting

Based on the previous section, once we build the non-linear model of each
clustering-based regime, we can learn all the parameters. We make use of the
fourth-order Runge-Kutta method [16] to generate l/γ (γ = 3) potential activity
sets S = [s(t + γ), s(t + 2γ) · · · , s(t + l)] to estimate the [{s(t + 1), · · · , s(t + l)],
as presented in [23], for the forecasting step. The process is defined as follows:

s(t + γ) = s(t) +
1
6
(K1 + 2K2 + 2K3 + K4) + O5 (8)

where ds(t)/dt = F (s(t)), K1 = γF (s(t)), K2 = γF (s(t)+ 1
2K1), K3 = γF (s(t)+

1
2K2), K4 = γF (s(t) + K3). Thus, once we obtain the potential activity set S,
the regime model Eq. 5 can be used to make l-steps-ahead-forecast V, as follows:

V = εk + ES (9)

The detailed framework of our forecasting model utilizing clustering-based
regime identification is shown in Algorithm 1.

4 Experiments

4.1 Dataset Description

To test the performance of our model, we used one synthetic dataset and three
real-world financial datasets. The synthetic dataset (SyD) consists of 400 time
series of length 1350, governed by 6 distinct regime. They are generated by
the regime functions RF as RF (t) =

∑6
k=1 αk�k(t)fcnk(t), where α ∈ {1, 0}

(
∑6

k=1 αk = 1) allows having one regime to be exhibited in a time interval.
�k(t) ∈ [0, 1] is to exhibit regimes with constraint

∑6
k=1 �k(t)=1. The 6 regime

functions are defined as follows:

fcn1(t) = cos(
2πt

5
) + cos(π(t − 3)) fcn2(t) = cos(

2πt

5
) − cos(2π(t − 3))

fcn3(t) = sin(
2πt

5
− 3) − sin(

πt

6
) fcn6(t) = cos(

3πt

5
) + sin(

2πt

5
− t)

fcn4(t) = tan(
πt

2
− 3) − 1

2
cos(

π(t − 3)
6

) + cos(π(t − 13))

fcn5(t) = tan(
πt

2
− 3) ∗ cos(

π(t − 3)
6

) + cos(π(t − 13))

(10)
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Algorithm 1: Framework of the Proposed Model
Input: Financial time series: X, Slide window length: w, Threshold: η
Forecasting window: l, maximal number of regimes in a window: m
Output: Forecasting time series: F, Transition probability: τP
begin

/* Initialization */

– tc = w, current time point;
– RB = [], regime database;
– F = [], forecasting time series;
– τP = [], transition probability;

repeat
/* Get slide window data Xw from X */

Xw = X[tc-w:tc];
/* Identify regimes on Xw by clustering-based method */

Obtain a regime set RS;
if len(RB) ==0 then

Add all the regimes in RS to RB;
for R in RB do

/* Regime estimated value on R */

Obtain parameters on regime R by Eq. 4 and 5;
Generate S by Eq. 8 set on regime R;
Obtain forecast value on regime R by Eq. 9;
Obtain Q transition probability by Eq. 7;

F.append(vl);
τP .append(Q);

for RRS in RS do
Err =[];
Obtain CRS center of regime RRS ;
for RRB in RB do

Obtain CRB center of regime RRB ;
Err.append(d2(CRS − CRB));

if min(Err) > η then
/* Identified a new regime RRS */

else
/* Regime RRS already existed */

Find the best RRm of RRS in RB and add RRm data into RRS ;

Obtain parameters on regime RRS by Eq. 4 and 5;
Generate S by Eq. 8 set on RRS ;
Obtain forecast value on regime RRS by Eq. 9;
Obtain Q transition probability by Eq. 7;
Replace RRm by RRS ;

F.append(vl);
τP .append(Q);

until iterate for next window ;
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Three real-world datasets were selected from financial markets. The first one
(Stocks) consists of 200 stocks selected from top 500 companies including AAPL,
IBM, BAC, MSFT, WMT and so on. The second (Sectors) is comprised of 9
financial sector SPDR Funds: XLB, XLE, XLF, XLI, XLK, XLP, XLU, XLV,
XLY. The last (ETFs) contains 18 ETF funds: EWA, EWC, EWD, EWG, EWH,
EWJ, EWS, EWW, EWP, EWQ, EWM, EWL, EWI, EWN, EWO, EWK, EWU,
SPY. These three datasets consist of daily frequencies (for business days only),
comprising over 22 years’ data, available on the yahoo finance website1. It is
worth noting that the experimental financial data were converted into volatility
based on the log-return of the close price, as described in [10].

4.2 Performance Metrics

There are many metrics for evaluating the performance of a forecasting model.
Here, due to space limition, we report the results obtained on the most popu-
lar metric for evaluating forecasting performance: the root mean square error
(RMSE) [22]. The performance metrics is defined as follows:

RMSE =

√√√√ 1
T

T∑

t=1

(σi − σ̂i)2 (11)

where T is the length of the forecasting window, σi and σ̂i are the ground truth
and predicted value at time t respectively. The smaller value, the better the
performance of a forecasting model, meaning that the predicted value is closer
to the ground truth.

4.3 Experimental Results and Discussion

In this section, we present the results of our model, and evaluate its performance
against some comparable state-of-the-art methods on synthetic and real-world
datasets. We tested our model using a slide window of half a year (126 business
days) to forecast one month ahead (21 business days) for the real-world data,
and a slide window of length 75 to forecast 15 steps ahead on the synthetic data.

Fig. 3. The clustering results of the first window in stock dataset

1 https://ca.finance.yahoo.com/.

https://ca.finance.yahoo.com/
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Regime Identification Analysis. An accurate, effective regime identification
model is the key to achieving good performance of our forecasting model, since
the latter is built on the regime identification results. We therefore start by ana-
lyzing the regimes identified by our clustering-based regime identification model.
First, we need to identify the regimes in the first slide window and then iterate to
the next slide window. Note that the synthetic dataset SyD was generated with
K = 6 known regimes by Eq. 10, but for our real-world datasets, we do not have
ground truth information such as the number of regimes. To validate the per-
formance of our regime identification model, we therefore test it for numbers of
regimes varying from 2 to the maximal value 7 on the synthetic and real-world
datasets, and make use of the silhouette score to find the optimal number of
regimes in each slide window. For example, the results for the first slide window
of the Stock dataset is shown Fig. 3. It is clear that all 200 time series in the win-
dow are clustered into 2 groups with the largest silhouette score (0.586), which
means that there are two regimes identified in the first slide window. Look at the
regimes identified in the synthetic and real-world datasets as shown in Fig. 4, it
can be seen that 6 distinct regimes are identified in the synthetic data, which
is corresponds to the true number of regimes generated. There are 6 distinct
regimes identified both in Stock and Sector dataset. While 8 different regimes
are identified in the ETFs dataset as in Fig. 4. In summary, our clustering-based
regime identification model can find the regime groups accurately and effectively.

Fig. 4. The regimes identified in four datasets respectively.

Market Forecasting Analysis. To validate the performance of our model, we
use a slide window of half a year with 126 business days to forecast one month
with 21 days ahead for the real-world dataset, while a window of 75 steps to fore-
cast 15 steps ahead for the synthetic dataset. For page limitation, we randomly
selected two time series from the Sector and ETFs datasets, respectively, as
examples to show the performance of regime identification and value forecasting
of our proposed model. The results are as shown in Fig. 5.
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Fig. 5. Examples of regime trajectories and market forecasting, and also including three
regime transition processes with the time-varying transition probabilities in trajectory.

Look at the regime trajectories in Fig. 5, it can be seen that there are six and
eight regimes identified in stock and ETFs dataset respectively, and the iden-
tified regimes, marked with corresponding colors, are roughly synchronized to
the regime exhibited in the real market. Moreover, we present regime switching
process on trajectories of stock CVX and etf EWA. When comparing with two
switches from R3 to R4 in trajectory of etf EWA as in Fig. 5, the probabilities
of R4 (pR3−>R4 = 0.61) in the first switching are completely different from the
second one (pR3−>R4 = 0.71) due to our unique time-varying learning mecha-
nism that is lacked by existing methods. Furthermore, this kind of time-varying
transition probabilities can be used to explicitly explain the regime switching
mechanism from the model interpretability. What the most important is that
the ground truth is obviously well matched by our forecasting on stock CVX
and ETF EWA as shown in Fig. 5. In summary, our model can identify regime
accurately and demonstrates promising performance for the market forecasting.

Performance Analysis. To validate the forecasting quality of our model, we
compared our experimental results with that generated by the baselines on the
four test datasets. The baselines for the result comparison are as follows: VARMA
[20] is a classical statistical model for analyzing and forecasting time series data.
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TRMF [29] is a regularized matrix factorization based auto-regressive predic-
tion model. VAR-MLP [31] is a hybrid model that combines auto-regressive and
multi-layer model for time series forecasting. MAGNN [9] is a graph neural net-
work based methods for financial time series prediction. DSTP-RNN [19] is an
attention-based recurrent neural network method for multivariate time series
forecasting. RegimeCast [23] is a regime shifts based forecasting model for co-
evolving real-time data streams. The results are shown in Table 1; the best
results are highlighted in bold and the second best are underlined.

Table 1. Comparison of RMSE on test datasets.

Models SyD Stocks Sectors ETFs

VARMA .35303 .00349 .00316 .00328

TRMF .26986 .00307 .00275 .00262

VAR-MLP .23388 .00226 .00232 .00245

MAGNN .18652 .00161 .00121 .00135

DSTP-RNN .20421 .00172 .00086 .00237

RegimeCast .12516 .00205 .00143 .00169

Ours .08072 .00103 .00041 .00082

We can see that our model outperforms the baselines, earning the smallest
(best) values on the performance metric, and shows a significant improvement
over the second best baselines (underlined) in Table 1. The deep learning methods
outperform the traditional methods (VARMA, TRMF), as the latter cannot har-
ness the non-stationary and non-linear dependencies for the prediction. However,
the deep learning based VAR-MLP can not explicitly model the cross-sectional
dependencies for the prediction, putting it at disadvantage compared to the
graph neural network based methods (DSTP-RNN, MAGNN). RegimeCast can
capture the non-stationary and non-linear dependencies for the value prediction,
but it ignores the cross-sectional regime dependencies, which is a degenerated
version of our model that operates without considering multiple regimes in slide
windows. In sum, our model shows promising performance on financial market
forecasting.

5 Conclusion

In this paper, we have proposed a financial market forecasting model utilizing
clustering-based cross-sectional regime identification. Our proposed model not
only captures cross-sectional dependencies in multiple time series, but also iden-
tifies cross-sectional regimes dynamically along with the time-evolving financial
markets, using a time-varying transition probability matrix. In addition, we have
built a non-linear forecasting model based on a clustering-based cross-sectional
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regime model for financial market forecasting. Experimental results on synthetic
and real-world datasets demonstrate the promising performance of our model.
However, we will improve the performance of our model and test it on hourly and
minutes financial time series or sensor data. Moreover, we also may apply our
model into other domains, such as the energy consumption and mechanical fault
diagnosis. In short, we see the significant challenges for our future work, but we
are confident that the proposed method has great potential in real applications.
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