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Abstract—We investigate issues related to dynamic cross-
sectional regime identification for financial market prediction.
A financial market can be viewed as an ecosystem regulated by
particular regimes that may switch at different time points due
to structural breaks driven by market forces in the financial
ecosystem. Most existing regime-based prediction approaches
assume that the training data were sufficiently representative
of possible regimes occurring in the market, which prevent them
from identifying new regimes in the process of prediction since
the regimes only switches between a fixed number of already-
identified regimes with a static transition probability matrix.
Such an assumption is unrealistic and prevents these approaches
from being effective for real-world applications since financial
markets are time varying and may fall into a new regime at
any future time. Moreover, most of such approaches are focused
on single time series. These shortcoming prompted us to devise
a dynamic cross-sectional regime identification model for time
series prediction. The new model is defined on a multi-time-
series system, with time-varying transition probabilities that
can identify new cross-sectional regimes dynamically from the
time-evolving financial market. Experimental results on real-
world financial datasets illustrate the promising performance and
suitability of our model.

Index Terms—Dynamic Regime identification, Cross-sectional
Regime identification, Financial Market Prediction

I. INTRODUCTION

A critical need in financial market prediction is the capacity
to foresee market behavior in periods of high or low stress on
financial time-series, and to establish links between market
dynamics and the general state of the market. This is an
important topic that has been investigated by many researchers
and practitioners due to its potential financial gain [1], [2].
However, studying the market behaviors underlying financial
data is not an easy task because certain market behaviors,
characterized by dynamic patterns, known as regimes, are not
directly observable, such as skewness and fat tails, downside
risk properties, and time varying correlations [3], especially
for those characterized by the fat tail distribution, volatility
clustering, asymmetry and mean reversion [4]. In such cases,
modeling the behavior of financial data and making prediction
still remains an opening research problem.

Regime switch analysis is extensively advocated to capture
some aspects of complex behaviors and continues to gain
popularity in many fields for tasks, such as distinguishing
between woodlands and grasslands in an ecological system
[5], walking and wiping activities in motion sensors [6]
and weekday and weekend consumption in energy systems
[7]. A regime can be defined by a specific group of linear
or/and non-linear patterns that share identical dynamics or

other characteristics at a specific time, where a regime may
switch to another within that ecosystem. Regime switch is
interpreted here as occasional, discrete shifts in the parameters
governing the dynamic behavior caused by external drivers
and/or internal feedbacks [8]. For example, Fig. 1 shows a time
series in an ecosystem, regulated by three regimes: colored red
(R1), blue (R2) and yellow (R3), respectively, which consist
of three groups of distinct patterns and contiguously repeat
over time in the ecosystem.

Fig. 1. An example of an ecosystem dominated by three regimes colored red (R1),
blue (R2) and yellow (R3), respectively. Vertical dashed lines delimit the regimes over
time.

Recent advances in regime switch models [9], [10], [11]
make them a promising approach in financial market studies
to explore dynamic patterns or characteristics of financial time
series for market prediction. Most existing regime models
are designed to predict the likelihood of a structural break
resulting in a regime switch that is driven by a combination of
driving variables, pressures from within or outside the market
[8], [12], [13]. However, a common drawback of these models
is that they are based on the assumption that the training data
were sufficiently representative of possible regimes occurring
in the market with a static transition probability matrix, which
prevents these methods from identifying new regimes in the
process of prediction due to the fact that the regimes only
switches between a fixed number of already-identified regimes.
For example, if the data from before the 2008 financial crisis
are used to train a model, the model will likely predict the
2008 financial crisis regime as one of the regimes identified
previously and can not identify the crisis regime of 2008. Thus,
it would be difficult to achieve an acceptable result due to
the fact that the market may switch to new regimes at any
time, and the transition probabilities also vary over time and
depend on some underlying economic fundamentals as they
are affected by current market conditions.

On the other hand, some models such as the Markov
switching models have also been proposed to allow the tran-
sition probabilities to vary over time by using observable



covariates, including strictly exogenous explanatory variables
and lagged values of the dependent variables [14]. However,
the performance of these approaches depends on application-
specific prior knowledge such as which variables or which
functions are used to describe the dynamics of the transition
probabilities [9]. Moreover, these models still suffer from
the issue of switching between a fixed number of already-
identified regimes due to the fact that they are not capable
of dynamically identifying new regimes occurring in the
time-evolving market. Such limitations prevent these models
from being effective for real-world applications since financial
markets are time varying and may fall into a new regime at any
future time. For example, the 7th time interval (the last one)
in Fig. 2 is not included in the training data, existing regime
models will predict it as the closest already-identified regime
R1. However, the actual regime is a new one (R4), different
from all the previously identified regimes (R1, R2, R3), which
results in poor performance of the prediction model.

Fig. 2. An example of an ecosystem dominated by three regimes prior to time step
1200. Note that a new regime occurred after time step 1200 in the time evolving market.
Vertical dashed lines delimit the regimes over time.

Inspired by the challenges above, we propose a model
for dynamic cross-sectional regime identification in financial
data for market prediction. Our model allows identifying the
number of cross-sectional regimes dynamically according to
the regime identification process in the time-evolving financial
market, to bypass the problem of regime switching among
a fixed set of regimes with a static transition probability
matrix. Moreover, the regime transition probability of our
dynamic regime identification model is time-varying over the
dynamic market, which provides insights for financial market
behavior analysis increases the interpretability of the model’s
explanations. The major contributions of this work can be
summarized as follows:

• We propose a model for dynamic cross-sectional regime
identification in financial data for market prediction,
which allows identifying the number of regimes dynami-
cally during the regime identification process in the time-
evolving financial market, to eliminate the drawback of
switching into already-identified regimes with a static
transition probability matrix.

• We propose a time-varying transition probability over the
dynamic market, which provides insights for financial
behavior analysis in the markets and better interpretability
for model predictions.

• We propose a new data reconstruction methods by com-
bining three different volatility intervals to capture dy-

namic patterns, such as monthly, quarterly and annual
dynamic patterns, for regime identification in financial
markets.

• We validate our model by implementing it on multi-time
series financial data. We illustrate the suitability of the
proposed method by comparing its performance with that
of the baseline algorithms. Comprehensive experimental
results demonstrate the promising performance of our
model.

The remainder of this paper is organized as follows. In
section II, we discuss related work on the market prediction.
Section III presents the proposed dynamic cross-sectional
regime identification based prediction model in details. Section
IV provides empirical results on financial data and compares
the results with other baselines. Finally, conclusions are given
in section V.

II. RELATED WORK

Recent literature reports a number of approaches applied to
financial market prediction, typically using statistical models,
such as the AR, ARIMA [1], TBATS [2], VARMA [15] and
GARCH families [16]. However, these approaches are based
on the assumption that the residuals are uncorrelated and
normally distributed. If either of these assumptions does not
hold, then the prediction may be incorrect. Moreover, they
are all based on linear equations, and are thus incapable of
modeling financial data governed by non-linear dynamics. To
model the non-linear dynamics of financial market behaviors,
deep neural network based methods have been proposed for
market prediction [17], [18]. while these approaches can
achieve relatively good prediction performance, it comes at
very high computational cost because of the overwhelming
number of parameters. Moreover, from the standpoint of model
interpretability, they are unable to provide an effective account
for the regime-switching mechanism.

To render the model interpretable, Hamilton [19] proposed
a regime switch model for financial market prediction in
which the regime switches are governed by unobservable state
variables, following a fixed-order Markov chain process. Deng
et al. [20] proposed a regime switch model to capture the
price spikes using a continuous-time framework. Huisman et
al. [21] proposed a three-regime model on electricity price data
that is able to predict regime switches using constant Markov
transition probabilities. Ethier and Mount [22] proposed a
regime switch model for the behavior of electricity spot
prices in various deregulated markets. Klaassen et al. [23]
proposed a two-regime Markov regime-switch GARCH model
on volatility to make multi-period ahead volatility forecasting
a convenient recursive procedure. Marcucci et al. proposed
a regime-switching GARCH model to forecast stock market
volatility in financial markets [24]. However, all of these
approaches assume that the regime transition probabilities are
constant over time, which is impractical for real application
since the probabilities vary over time and are affected by
changing market conditions.



As mentioned earlier, Markov techniques have been used
to allow the transition probabilities to vary over time by
using observable covariates that include strictly exogenous
explanatory variables and lagged values of the dependent
variable. Marco et al. [14] proposed a Markov switch model
allowing transition probabilities to vary over time as specific
transformations of lagged dependent observations. Luca et al.
[25] proposed a Markov regime switch model using time-
varying transition probabilities to adjust US fiscal policy
for asset prices. Lee et al. [26] proposed a regime switch
model with time-varying transition probabilities for optimal
investment. Those approaches can be useful and effective, on
the condition that users specify what variables or functions are
to be used to describe the dynamics of transition probabilities
[9]. Moreover, they assume that all the regimes occurring in
the test data are the same as the regimes identified in the
training data. In other words, they are incapable of dealing
with the situation depicted in Fig. 2.

In this paper, we propose a dynamic regime identification
model with time-varying transition probability. Not only our
model identifies novel regimes via the regime identification
process, but also it is capable of predicting switches to these
new regimes by the time-evolving financial market. It can
provide meaningful insights for financial market behavior
analysis and powerful model interpretability as a result of the
regimes’ time-varying transition probabilities determined over
the dynamic financial market.

III. THE PROPOSED MODEL

In this section, we give a detailed description of our dynamic
model for cross-sectional regime identification and prediction,
from data pre-processing to the final market prediction, which
includes volatility calculation, data reconstruction, model de-
scription and estimation.

A. Overview of the Proposed Model

This subsection gives an overview of the proposed cross-
sectional regime prediction model through the scenario de-
picted in Fig 3. While our cross-sectional model is designed
for multiple time-series data, we present it on data contain-
ing a single time series for a concise explanation from the
model description standpoint, to provide insights and a better
understanding of the mechanisms underlying the model. We
start from identifying the first regime R1 from the first slide
window and make a prediction, and then implement the regime
identification and prediction process iteratively. In a word, we
need to identify the regime of the time series segment Xw, in
order to make a prediction of ev , here w = 126 a variable
corresponding to the duration of the current regime while
v = 21, usually prefixed, corresponds to the number of future
times stamps for the prediction. Thus, assume that K regimes
(Rk, 1 ≤ k ≤ K) have been identified before time t − w;
followed K estimations of ewi (1 ≤ i ≤ K). By comparing the
slide window Xw with the K estimations ewi , if the smallest
error is greater than η||Xw|| where η = 0.5, a new regime will
be identified based on the current Xw, and added to the regime

database Rdb and obtained the transition probability pK+1;
otherwise we identified the regime of current window Xw, and
add XW to the identified regime and update the regime pa-
rameters, and then update the transition probability P . Finally,
we recognized the current regime Rpm

by maximal regime
transition probability pm and make a prediction ev = evRm

.
The overview of the dynamic cross-sectional regime prediction
model is shown in Fig 3.

B. Volatility Calculation

The point of interest for market prediction is to predict the
implied daily volatility of the stocks or indexes as the true
volatility is time evolving. The literature reports many ap-
proaches for volatility calculation, such as equally or weighted
approaches [27], [28]. However, the main idea is to estimate
the volatility by the variance of log returns over an interval of
trading days, where the log return, presented in [29], is defined
as the log of the ratio of closing prices at adjacent points in
time as follows:

rt = ln
pt
pt−1

(1)

where pt is the closing price at time t, and based on the daily
return, the classical volatility estimator presented in [28] is
estimated by the variance of log returns over each interval
with m trading days as follows:

σt+1 =

√√√√ 1

m

t∑
s=t−m

(rs − µ)2 (2)

where rs is the logarithm daily return of the sth trading day.
m specifies the number of trading days at the beginning of
day t and µ is the mean of m trading days.

However, the volatility in Eq. (2) assigns equal weights to
the amounts of historical data, which means that all the data in
the m trading days are of equal importance in reflecting the
dynamics of the data. In practice, however, due to the non-
stationary nature of financial data, the most recent historical
data are more relevant to reflect the time-evolving dynamics
and give the most information for future prediction. Thus,
in order to capture the dynamics patterns of time series
for a better prediction, the exponentially weighted moving
average approach was proposed to capture the time relevant
movements and dynamic patterns in the volatility of a time
series by assigning much more weight to the most recent
data using an exponential function [27]. The exponentially
weighted volatility can be estimated as follows:

σt+1 =

√√√√(1− λ)

t∑
s=t−m

λt−s−1(rs − µ)2 (3)

where λ is the weight decay factor, by which the past data
decay as they become more distant, and

∑m
i=1 λ

i = 1. Note
that, the sum of the weights will be approaching but not to
equal 1 in practice since only limited historical data will be
used during the implementation A large decay factor implies a
value-at-risk measure that is derived almost exclusively from



Fig. 3. An overview of the dynamic cross-sectional regime based prediction model.

very recent data. We therefore introduced it into this paper,
and set λ = 0.8 in the implementation, while setting µ = 0 as
Figlewski presented in [30].

C. Data Reconstruction

The basic purpose of data reconstruction is to make the
data ”talk a lot”, which can help us explore the dynamic
patterns hidden in the data, such as financial market dynamics
or behaviors. To achieve a better prediction, we hope to make
use of all possible time-evolving dynamic patterns in the
financial markets, both the short- and long-term, e.g.,monthly,
quarterly and annual patterns. However, to explore the diver-
sity patterns, we use a multi-layer approach different time
volatility intervals, to capture different layer dynamic patterns
in the volatile financial markets. The longer the interval, the
less fluctuation in volatility, due to the fact that the volatility
will be smoothed by longer duration. For example, we can
use 3 different volatility intervals ({21, 63, 126}) to capture
the monthly, quarterly and annual dynamic patterns in the
volatile financial markets, respectively, and then reconstruct
these into a new one that may be characterized by much more
dynamics patterns in the market than each one individually.
The reconstruction is defined as follows:

σt =

m∑
i=1

ωi × σi
t (4)

where σi
t is the ith volatility interval derived from the ex-

ponentially weighted volatility by Eq. (3). In this paper, we
use 3 (m = 3) different interval ({21, 63, 126}) to capture
the monthly, quarterly and half annual dynamical patterns in
volatile financial markets. Thus, this approach can capture
both short-term and long-term market behaviors in the time
evolving financial system. Here, we assign following weights

(ω ∈ {0.25, 0.5, 0.25}) to the three different intervals to
balance the regime identification and prediction. And detailed
explanation is provided in the Dataset Description sub-section.

D. Regime Analysis and Market Prediction

This subsection contains regime analysis and market pre-
diction. The regime analysis includes a detailed description of
the regime model and regime identification.

1) Model Description: Inspired by the model proposed in
[5], [6], [31], we propose a dynamic cross-sectional regime
identification model for volatility prediction in a financial
market regulated by different regimes. For a better model
description, we assume that there are K identified regimes
in the dynamic financial market consisting of multiple time
series. Thus, the market can be defined as follows:

dsk(t)

dt
= ak +Gkg(sk(t)) +Fkf(sk(t)) (1 ≤ k ≤ K) (5)

d∆k(t)

dt
∝ pk(t) (6)

e(t) = arg max
p1,··· ,pK

εk + Eksk(t) (7)

where ds(t)/dt denotes the derivative with respect to time
t, s(t) denotes the potential activities in market, and e(t)
the estimated values. g(·) is a linear function, while f(·)
is non-linear. Here, a, G, F describe the potential activities
s(t), capturing linear, exponential, and non-linear dynamic
patterns of the financial ecosystem respectively. ∆k(t) is the
transition contributor of switching to kth regime at time t,
and pk(t) is the probability of switching to the kth regime
at time t and P is a regime switch matrix, while ε, E are
the observation projection that are used to estimate the e(t)
based on the identified regime. Therefore, a regime R can



be described by Θ = {a,G,F , ε, E , p}, while the dynamics
financial markets with K regimes ecosystem can be expressed
as < = {R1, . . . , RK , P}.

2) Regime Identification: In order to identify the regimes in
a financial market, we need to estimate the optimal parameters
which describe the dynamic patterns of each regime. Here,
we will give details of the parameter estimation process on
one regime. We divide the regime parameter R into two
parts: a linear part ΘL = {a,G, ε, E}, and a non-linear
part ΘN = {F}, as presented in [6]. These parts describes
the linear and nonlinear dynamic patterns of the financial
market, respectively, and can be optimized separately by the
expectation-maximization (EM) algorithm.

To obtain the optimal parameters of regime (R), we initial-
ize the nonlinear parameter ΘN : F = 0 for linear parameter
ΘL estimation. We can then estimate e on the initialized ΘN

for the E step of the EM algorithm. The process of estimating
the linear parameter ΘL can be described as follows:

e = ψ(s
′

0,Θ
′

L,ΘN )

{s0,ΘL} = arg min
s
′
0,Θ

′
L

‖ XR − e ‖ (8)

where XR denotes all the data belonging to regime R, ψ(·) is
a function that uses to estimate e. Note that, in contrary to the
estimation process presented in [6], our regime identification
process is based on the whole historical data with respect
regimes, since history data are of significance for future
prediction in financial markets. After obtaining the linear
parameter ΘL, we can get e on the ΘL for the nonlinear
parameter ΘN estimation, which is called the M step of the
EM algorithm, and the estimation process for the nonlinear
parameter ΘN can be described as follows:

e = ψ(s
′

0,ΘL,Θ
′

N )

{s0,ΘN} = arg min
s
′
0,Θ

′
N

‖ XR − e ‖ (9)

The next step is the transition probability estimation P, which
can be defined as follows:

ewk = ψ(sk0 ,Θ
k
L,Θ

k
N ) ∆k(t) = ln ||Xw − ewk ||

pk(t) =
exp(d∆k(t)

dt )∑K
k=1 exp(d∆k(t)

dt )
P = P ∪ {pk(t)Kk=1}

(10)

Therefore, regime R can be described by Θ =
{a,G,F , ε, E , p}, while the dynamics financial ecosystem
with K regimes can be expressed as < = {R1, . . . , RK , P}.

3) Market Prediction: Once all the financial ecosystem
parameters < = {R1, . . . , RK , P} have been estimated, the
next step is volatility prediction on this system. Actually,
the process of obtaining the regime parameters is the regime
identification process. We can identify the regime of current
time point with the maximal transition probability, we then
can make a prediction based on the identified regime, the
prediction is defined as follows:

ev = arg max
p1,...,pK

ψ(sk0 ,Θ
k
L,Θ

k
N ) (11)

The framework of the prediction process is shown in detail in
Algorithm 1.

IV. EXPERIMENTS

In this section, we provide a description of the test data sets
and then introduce the evaluation methods used to validate the
performance of our proposed model. Finally, we compare the
empirical results with other baselines.

A. Datasets

To test the performance of our model, we choose 9 ex-
tensively used financial markets Sectors: the one consists of
nine financial sector SPDR Fund: XLB, XLE, XLF, XLI,
XLK, XLP, XLU, XLV, XLY; the other consists of 12 stocks
selected from top 500 companies: AAPL, IBM, BAC, MSFT,
MS, WMT, INTC, C, CVX, JPM, HIG, WFC. Both of two
datasets consist of daily frequencies (for only business days),
comprising over 22 years’ data (a total of 5626 business days)
including Dot-com Bubble (2001-2002), the financial crisis
(2008-2009), and the covid-19 (2019-2020) period from Jan
3th, 1999 to May 31th, 2021. These data are available on
the google Finance website 1. We used the data reconstruc-
tion method for data processing from the log return to the
reconstructed data as shown in Fig. 4. Comparing with the
four volatilities, it can be easily seen that the reconstructed
volatility (blue line) delays the changes in monthly volatility
(red line) and speeds up the changes in annual volatility
(green line). Moreover, it is much smoother than the quarterly
volatility (gray line). To some extent, this reconstruction
method provides a better description of the complex dynamic
patterns in financial markets, such as earlier structural breaks,
which can be used for market regime identification and switch
analysis.

Fig. 4. An example of reconstructed volatility from log return of XLB sector

B. Evaluation Methods

There are several different measurements for evaluating
volatility prediction performances. To evaluate the prediction
ability, we chose two of the most commonly used loss func-
tions the mean square error (RMSE),which is based on a

1https://ca.finance.yahoo.com/

https://ca.finance.yahoo.com/


Algorithm 1: Framework of proposed model
Input: Financial data: X , Slide window Length: w,
Prediction window: v
Threshold η
Output: Predicted volatility: E
begin

/* Data processing */
• Log-return calculation;
• Volatility estimation ;
• Data transformation;

/* Initialization */

• tc current time point;
• < = [], regimes;
• E = [], predicted time series;
• TP = [], transition probability;

repeat
/* Get window data Xw from X */
Xw = X[tc-w:tc];
if len(<) ==0 then

/* Identify regime on Xw */
<.append({R});
/* Estimated value on R */
ev = ψ(R);
/* predicted value on R */
E.append(ev);
/* p1(tc) = 1.0 */
TP.append(pR(tc));

err = [];
for R in < do

ewR = ψ(R);
err.append(

√
‖ewR −Xw‖);

/* obtain pR(tc) */
TP.append(pR(tc));

if min(err) > η||Xw|| then
/* identify new Rnew on Xw */
<.append(Rnew);
/* obtain pRnew(tc) on err */
TP.append(pRnew

(tc));

else
/* identified regime of Xw */
Xw ∈ Rm;
/* Update TP on err */
TP.append(pRm(tc));
Insert Xw to Rm;
Update Rm parameters;

Rpm = arg minp1,··· ,pi,··· ‖ < ‖
evRm

= ψ(Rpm);
E.append(ev);

until move for next window;

quadratic loss function, and the mean absolute error (MAE),
which is less sensitive to severe mispredictions than the RMSE
[32]. We also used the mean absolute percentage error (MAPE)
introduced by Bollerslev and Ghysels [33]. The loss functions
are as follows:

MAE =
1

T

T∑
t=1

|σi − σ̂i| (12)

MSE =
1

T

T∑
t=1

(σi − σ̂i)2 (13)

RMSE =

√√√√ 1

T

T∑
t=1

(σi − σ̂i)2 (14)

MAPE =
1

T

T∑
t=1

|σi − σ̂i
σi

| (15)

where T is the length of the rolling window, σi, σ̂i are
the actual and predicted volatility at time t respectively. The
smaller of the values, the closer are the predicted time series
values to the actual values, and the better performance of the
predicting model.

C. Experimental Results and Discussion

In this section, we present the results of our model, and
evaluate its performance against some comparable methods
on the nine sectors that comprising the financial market also
called as the financial ecosystem. Since our model is designed
to perform predictions based on the cross-sectional regime
identification for financial market. We tested our model with
21 days ahead of prediction. The results are presented in the
following sub-sections.

1) Cross-sectional Regime Identification Analysis: Our
model is designed for cross-sectional regime identification
based market prediction, so we get start from regimes identi-
fied on financial ecosystem and perform a regime analysis.
First, we present the regimes identified by our model for
the ecosystem consisting of two datasets as shown in Fig.
5. It is clear that 6 different regimes, i.e. R1, R2, R3, R4,
R5 and R6 delimited by dashed lines, were identified with
respect to two ecosystems as shown in Fig. 5(a) and Fig. 5(b),
which means that both of these two financial ecosystems are
dominated by 6 different regimes. However, as shown in two
sub-figures in Fig. 5, it can be observed that these regimes are
distributed differently in time, and the switching times are not
synchronous in the two ecosystems, in some cases, a switch
to the same regime occurs at the same time. Comparing the
two sub figures, we can observe some concordance between
regime intervals. However, there exist also distinct intervals,
for instance, corresponding to the first regime R2 interval in
Fig. 5(b), there exist two regimes R2 and R1 in Fig. 5(a); and
corresponding to the second regime R4 interval in Fig. 5(b)
there exist 3 different regimes (R1, R2 and R4) in Fig. 5(a)

On the other hand, by looking at the common regimes of two
ecosystems in Fig. 5, we observe also some identical regimes



(a) Regimes identified in sector ecosystem. (b) Regimes identified in stock ecosystem.

Fig. 5. Regimes identified in sector and stock ecosystem. In each of case, 6 regimes (R1, R2, R3, R4, R5 and R6) were identified. Regimes are delimited
by vertical dashed lines

with the same transitions at the same time points. Moreover,
we notice that regimes R3, R5 and R6 occur only once in the
whole market, while the others are repeated at least twice;
and if they are combined with big events in the financial
market, the timestamps of the three regimes (R3, R5 and
R6) roughly coincide with the Dot-com Bubble (2001-2002),
the financial crisis (2008-2009), and the covid-19 (2019-2020)
period, respectively, which confirms that our model is capable
of identifying cross-sectional regimes in the financial market.

2) Time Varying Transition Probability Analysis: The key
problem in regime switch analysis is when and where to
switch. The transition probability can define the likelihood of
remaining in the current regime or being forced to switch to
another. Thus, the transition probability is of great significance
to the regime identification and regime switch analysis. Since
our regime identification model is a dynamic model whose
regime database is expanded dynamically once a new regime
arrives in the market. As noted previously, this is completely
different from existing regime models, in which the only
switches possible are among the already-identified regimes,
with a static transition probability, and new regimes cannot be
identified as they arrive.

As presented above, we identified 6 regimes in the sector
and stock ecosystem: R1, R2, R3, R4, R5 and R6. The time-
varying transition probabilities of the two ecosystems with 6
regimes are shown in Fig. 6(a) and Fig. 6(b). For a better
explanation of the regime switch analysis, we show them
individually as in Fig. 6(c) and Fig. 6(d) respectively. We will
exhibit the regime transition process based on the time-varying
transition probabilities shown in Fig. 6. We take the transition
probabilities of sector ecosystem Fig. 6(a) as our example for
a further analysis of the regime switching process. There is
only one regime R1 in the market at the beginning, and the
transition probability of R1 is set to 1 (blue line). We assume
that the transition probabilities to non occurred regimes are
set to 0 (the other five are set to 0), while regime R2 was
identified, the transition probabilities of regime R2 is greater
than R1 as shown in Fig.6(c). Thus, the transition probabilities
to the other 4 regimes are set to 0.

Actually, this is an unrealistic assumption due to the fact that
the regime is not observable and the number of regimes is also
unknown, and the regime transition probability is incalculable
until the corresponding regime turns up in the market. We
are adopting this setting here for a better explanation from
the market standpoint. In fact, the transition probability is an
indicator forcing the regime switching or not. Looking at the
transition probability of regime R6 (cyan line) switched from
regime R1 (blue line) in Fig. 6(a), the transition probability
of regime R5 (magenta line) is largest, followed by R3 (green
line), R1 (blue line) and R4 (yellowgreen line). This means the
structures or dynamic patterns of regime R6 is dissimilar from
regime R4 where there should be a regime switch. It is much
similar to that of regime R5, but it is still different from regime
R5. Thus a new regime was identified and the system force to
switch to a new regime R6, and this can be easily confirmed in
Fig. 5 by comparing with the regime structures of R1, R2, R3

and R4. In a word, this kind of time-varying transition proba-
bility not only provides a way to analyze the dynamic regime-
switching behaviors hidden in financial markets, but also helps
us understand the regime-switching mechanism from model
explanation standpoint, which is completely different from the
existing regime switching model with a static regime transition
probability.

3) Market Prediction Analysis: To show the prediction
quality of our model, we use a slide window with 126 business
days and make a prediction with 21 days ahead of time on
two real-world datasets. However, the results of the baselines
were omitted in the figures, as their high error values make
it hard to display our prediction values and errors legibly
in the same figure. However, we compared our results with
the baselines in terms of average error using the performance
metrics MAE, MSE, RMSE and MAPE later. The predicted
value and ground truth of two datasets are shown Fig. 7(a)
and Fig. 7(b), respectively. It is hard to find the difference
between the predicted value and ground truth, we thus present
them on individually for a better view of our prediction shown
in Fig. 7(c) and Fig. 7(d). It is clear that our predicted values



(a) Time-varying transition probability among 6 regimes in sector ecosystem. (b) Time-varying transition probability among 6 regimes in stock ecosystem.

(c) Time-varying transition probability of each regime in sector ecosystem. (d) Time-varying transition probability of each regime in stock ecosystem.

Fig. 6. Time-varying transition probability switching among 6 regimes in sector and stock ecosystem are shown in Fig. 6(a) and Fig. 6(b). For a better
explanation for regime switching analysis based on the transition probabilities, we shown them individually as in Fig. 6(c) and Fig. 6(d) respectively.

TABLE I
COMPARISON OF MAE, MSE, RMSE AND MAPE RESULTS ON THE TWO DATASETS. THE BEST RESULTS ARE IN BOLD.

Sectors Stocks
MAE MSE RMSE MAPE MAE MSE RMSE MAPE

ARIMA 32.416 1.168 11.485 1621.538 42.318 1.567 14.321 1989.053
VARMA 26.715 0.876 9.873 1574.399 38.926 1.216 12.494 1882.981

ICA-GARCH 23.823 0.694 8.534 1469.351 36.591 0.984 11.367 1755.365
MTGNN 19.681 0.467 6.923 1301.905 34.762 0.813 8.136 1601.632
DeepGlo 17.638 0.359 4.329 1228.484 30.569 0.572 7.834 1532.514

RegimeCast 20.513 0.511 7.397 1391.952 32.214 0.784 9.593 1682.169
Our model 13.887 0.129 2.946 1064.282 26.715 0.311 5.829 1474.399

(red lines) are well matched by the ground truth (blue lines)
on every sub-pictures, which means our model exhibit good
performance on the prediction. The four time-evolving errors
with respect to MAE, MSE, RMSE, MAPE on two ecosystem
during the prediction process are shown in Fig. 7(e) and Fig.
7(f).

4) Performance Analysis: In this sub-section, we will show
the prediction quality of our model, and estimate its prediction
accuracy relative to the some baselines on the same datasets.
We used six benchmark models to compare the multi-step
forecasting performance in the two ecosystem: ARIMA [1]
and VARMA [15] are the classical statistical models for
analyzing and forecasting time series data. We determined
their optimal parameter by using AIC. ICA-GARCH [34]
uses independent component analysis (ICA) for transforming

the multivariate time series into statistically independent time
series for financial market prediction. DeepGlo [35] is a
deep neural network approach to high-dimensional time series
forecasting. MTGNN [36] is used to forecast multivariate time
series with graph neural networks. RegimeCast [6] is a regime-
based stream prediction model. The four error metrics MAE,
MSE, RMSE, MAPE for the prediction process are shown in
Table. I.

We can see that our model outperforms the methods and
earns the smallest values on each performance metrics, and
shows a significant improvement than the second best method
DeepGLO in Table I. ARIMA and VARMA have poor per-
formance since they are linear models and can not deal
with nonlinear dynamics for financial time series data. ICA-
GARCH need to transforming the multivariate time series into



(a) Prediction vs ground truth of sector ecosystem. (b) Prediction vs ground truth of stock ecosystem.

(c) Prediction vs ground truth on sector ecosystem shown individually. (d) Prediction vs ground truth on stock ecosystem shown individually.

(e) Time-varying average error of sector ecosystem. (f) Time-varying average error of stock ecosystem.

Fig. 7. The predicted value and ground truth with 21 days ahead are shown in Fig. 7(a) and Fig. 7(b), while Fig. 7(c) and Fig. 7(d) show individually for a
better view of the prediction. The time-evolving errors with respect to MAE, MSE, RMSE and MAPE during the prediction process are shown in Fig. 7(e)
and Fig. 7(f).

statistically independent time series, which of course inferior
these neural network based on models MTGNN and Deep-
GLO, but still better than ARIMA and VARMA. MTGNN
and DeepGLO can capture the nonlinear dynamics, but they
focus on short-term prediction and show pool performance
on long-term prediction, while DeepGLO still achieves the
second place. However, RegimeCast only relies on the data
within a slide window and ignores the importance of historical
data for the prediction. In summary, our model shows good
performance on both regime detection and financial time series
prediction.

V. CONCLUSION

In this paper, we proposed a dynamic cross-sectional regime
identification model for financial market prediction, which is
designed to operate by identifying the cross-sectional regime
patterns present in financial data with time-varying transition
probability. Our dynamic model is not restricted to switch
in a set of already-identified regimes, but also can switch
to a new regime, thanks to its dynamic regime identification
mechanism that can detect new regimes based on current
dynamic changes. Moreover, its unique time varying transition
probability provides a better explanation of dynamic market



behaviors resulting in regime switching, which is completely
different from existing regime identification models with static
transition probability. Experimental results on financial data
demonstrate the promising performance of our model.

Our future work will focus on the following aspects: we
will investigate correlations between individual financial data
based on our model, which, to some extent, can help to provide
insights for monetary policymakers and practitioners seeking
to analyze the time-varying dynamics and financial behaviors
hidden in markets and predict upcoming structural changes
of the volatility analysis for financial markets, helping them
make better decisions to reduce risk and maximize profits for
their investment. In short, we see significant challenges for our
future work, but we are confident that our method has great
potential in real applications.
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