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Abstract. While some methods are confined to linear embeddings and
others exhibit limited robustness, high-dimensional time series factoriza-
tion techniques employ scalable matrix factorization for forecasting in
latent space. This paper introduces a novel factorization method that
employs a non-contrastive approach, guiding an autoencoder-like ar-
chitecture to extract robust latent series while minimizing redundant
information within the embeddings. The resulting learned representa-
tions are utilized by a temporal forecasting model, generating forecasts
within the latent space, which are subsequently decoded back to the orig-
inal space through the decoder. Extensive experiments demonstrate that
our model achieves state-of-the-art performance on numerous commonly
used datasets.

Keywords: Time series factorization - Probabilistic forecasting - Non-
contrastive learning.

1 Introduction

Modern time series forecasting, involving correlated multivariate time series over
an extended period, encounters challenges with conventional methods like au-
toregressive models (AR, ARIMA) [12], especially when handling large datasets
with hundreds of thousands of time series due to scalability issues. Deep learn-
ing, exemplified by LSTM (8] and Temporal Convolution Networks (TCN) [1],
addresses this by training on the entire dataset, utilizing shared model param-
eters. However, these deep learning methods inherently struggle with capturing
inter-series interactions and correlations observed in diverse domains [24].

A promising research direction explores factorizing time series relationships
into a low-rank matrix, yielding a concise latent time series representation |22,
27,132]. Temporal Regularized Matrix Factorization (TRMF) [32] achieves this
by representing each time series with a linear combination of a few latent series
and applying linear temporal regularization to ensure temporal dependencies.
Forecasted values in the latent space are transformed back using matrix multi-
plication. DeepGLO [27] extends TRMF with nonlinear regularization, incorpo-
rating iterative training between linear matrix factorization and fitting a latent
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space Temporal Convolutional Network (TCN). Another advancement, named
Temporal Latent AutoEncoder (TLAE) [22], incorporates a nonlinear framework
through an autoencoder to extract the latent time series space. TLAE forecasts
within the embedding space, and then transforms forecast to the original space
through a decoder. All these factorization methods lack robustness, overlooking
random noise and distortions in data that may lead to issues like overfitting.
To address the aforementioned limitations and extend the existing line of
factorization research, we introduce the FR3LS forecasting model. Illustrated in
Figure 1, FR3LS nonlinearly projects high-dimensional time series into a latent
space with manageable dimensions, facilitating future value forecasting using
latent representations. The final predictions are derived by decoding latent fore-
casts generated by the middle layer forecasting model. This latent prediction ap-
proach serves to regularize the embedding space (latent space), capturing tem-
poral dependencies between embeddings. Furthermore, latent representations
undergo additional regularization through a non-contrastive objective with only
positive samples. This means that the model is trained to produce embeddings
robust to distortions applied to input subseries (i.e., augmented context views),
while minimizing redundancy between components of the vector embedding.
Thus, we present an all-in-one model capable of learning robust representations
while maintaining a connection between forecasts in latent and original spaces.

2 Related Work

We focus on recent deep learning approaches beyond traditional methods. Fur-
ther details on classical methods (e.g., AR and ARIMA) can be found in |2,
12,/20). Deep learning methods, encompassing RNNs [23,/26], CNNs [1], GNNs
(Graph NNs) [4], and Transformers [36], have gained acclaim for their effec-
tiveness in time series forecasting, surpassing classical models like ARIMA and
VAR (Vector AR). For instance, TCN [1] uses dilated convolutions to enhance
efficiency and predictive performance over traditional RNNs. Models like LST-
net [15] combine CNNs and RNNs to capture short-term local dependencies and
long-term trends. Additionally, LogTrans [16] and Informer [36] address self-
attention efficiency and excel in forecasting tasks with extended sequences. Fur-
thermore, GNNs such as StemGNN |[4], offer competitive results in multivariate
time series forecasting by exploring the spectral domain of the data.

Several deep neural network (DNN) models have been proposed for multi-
variate forecast distributions [6}/24,/25,31]. A low-rank Gaussian copula model
was proposed in [25] using a multi-task univariate LSTM. In [31], a deep factor
generative model using a linear combination of RNN latent global factors plus
parametric noise was introduced. Normalizing flows for probabilistic forecasting
with a multivariate RNN as well as a normalizing flow approach was used in [24].
VRNN was proposed in [6] as a model that uses a variational AE (VAE) in ev-
ery hidden state of a RNN across the input series. However, such methods suffer
from one of the following shortcomings: limited flexibility in modeling distribu-
tions in high-dimensional settings [25], only linear combinations of global series
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and noise distributions are modeled [31], invertible flow needs equal latent and
input dimensions [24], and multistep prediction propagation through the whole
model is required [6]. Additionally, scaling these methods for high-dimensional
multivariate series presents a significant challenge.

3 Problem Setup

Consider a high-dimensional multivariate time series dataset Y € RT*N | rep-
resented by Yi.7 = (y1,¥2,...,yr)", where each time point y; is a vector of
dimensionality N (i.e., y; € RY). The objective is to forecast the next 7 values
Yri1.14r = (Yre1,Yre2,--->y7res) T based on the original time series within
the training time-range Y7.7. The challenging yet intriguing task is to develop a
model capable of capturing the conditional probability distribution in the high-
dimensional space:

T

P(YT+1, - YT4r Y1) = Hp(yT+i|y1:T+i71)o (1)
i=1

4 Model Architecture

Following TLAE [22], we introduce an autoencoder-like structure for extracting
latent series with temporal regularization in the latent space. The complete
FRA3LS architecture is illustrated in F igure Starting with the input Y € R¥*V
our model is trained to extract meaningful latent series X. A forecasting model
is then employed to predict the next values in the latent series. Finally, a decoder
is applied to the latent forecasts, producing forecasts in the original space.

The encoder &y, (.) comprises three components: an Input Projection Layer
(IPL), a Timestamp Noising (TN) module, and a Feed Forward neural network
(FF), inspired by the work in [33]. The Input Projection Layer consists of a fully
connected layer that maps each vector 3, € RY at a timestamp to an interme-
diate latent vector z; € R%, with d, € N*. The Timestamp Noising module
introduces small noise to selected entries of Z = (z1,...,2,)? at randomly cho-
sen timestamps, generating distorted outputs ZW and Z®). These distortions
are applied to Z (intermediary subsequence) instead of directly on raw values
Y or latent ones X for enhanced model learning stability. The Feed Forward
neural network then projects the intermediate latent vectors Z(4), j € {1,2} into
the two augmented views X and X e R¥*4, Subsequently, we apply the
Timestamp Mean module to produce the latent series given as input to the fore-
casting model: X = (21, 2,...,2,)T € R**? where z; = Ll);j?) and d << N
is the dimensionality of the latent space. It is worth noting that we opted for
two context views for model simplification and computational ease, but users
can choose a different number if desired
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Fig. 1: Model architecture overview.

4.1 Temporal Contextual Consistency

Constructing positive pairs is essential in non-contrastive learning. Following
the recommendations of [33], we adopt the temporal contextual consistency
paradigm, treating representations at the same timestamp in two augmented
contexts as positive pairs to avoid the generation of false positives. We create a
context by applying timestamp (light) noising to the intermediary subsequence
Z. This approach leverages the fact that timestamp light noising does not alter
the magnitude of the time series. Moreover, it encourages the model to learn
robust representations at different timestamps capable of reconstructing them-
selves in distinct contexts.

Timestamp Noising generates an augmented context view for an input
series by randomly introducing noise to some of its timestamps. Specifically, it
adds small noise to the latent vectors z; € R% obtained immediately after the
application of the Input Projection Layer, defined as z; = z; +b.€; along the time
axis. Here, b; € {0,1} is a random variable drawn from a Bernoulli distribution
with a probability of p = 0.5 (i.e., by ~ B(0.5)), & ~ N(0,1), and both random
variables b; and z; are independently sampled in every forward pass.

4.2 Non-contrastive Representations Learning

As self-supervised learning (SSL) has demonstrated significant advancements in
enabling models to acquire meaningful representations across various domains,
Ts2Vec [33] incorporated the concept of contrastive learning to learn time series
representations. However, this learning approach is susceptible to selecting false
negatives in series with homogeneous distributions, where p(y:) ~ p(ys4i) for
some small integer [. To address this issue, we propose a non-contrastive strategy,
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aiming to encourage the model to learn exclusively from positive samples. This
strategy has shown substantial potential in previous works, such as [510}34].

As depicted in Figure after generating the augmented views X X
by applying the timestamp noising module followed by the feed forward module,
we treat representations at the same timestamp from the two views as positive
samples. The Barlow Twins loss (LpT) [34] serves as the loss function describing
the non-contrastive error of the model, defined by:

d d d
Lor &Y (1-Ci)>+Anvc Y > Ch (2)
i=1 i=1 j=1
i#]
where A\y¢ > 0 and C is the cross-correlation matrix computed between the two
augmented views along the timestamps (batch) dimension:

~(1)~(2
>
~(1 ~(2
V@D 3,2

This loss function encourages the cross-correlation matrix between embedded
outputs to be as close to the identity matrix as possible. Specifically, we aim to
equate the diagonal elements to 1, promoting invariance to distortions applied,
and the off-diagonal elements to 0, thereby decorrelating different vector compo-
nents of the embedding and reducing redundant information in the embeddings.

A
Cij =

3)

4.3 Deterministic Forecasting

When the latent representation X effectively captures the information in Y, tasks
such as forecasting in the original space can be efficiently performed within the
much smaller latent space. To this end, we introduce a layer between the encoder
and decoder to extract the temporal structure of the latent representations while
enforcing forecasting abilities. The central idea is illustrated in Figure a
forecasting model Fp..(.), such as LSTM |[11], is employed in the middle layer to
capture the long-range dependencies of the embeddings.

The latent matrix X = (x1,...,2,) is divided into two subseries: X;.5, =
(x1,...,2r) and Xp11.0 = (Tp41,-- -, Ty). During the training phase, the fore-
casting model is utilized to estimate the second subsequence X L+l Subse-
quences of length L < w denoted by the set {(xj+1, e ,a:j+L)|j € [|0, w—L—lH}

([|a, b|] denotes a closed integer interval) serve as inputs to the forecasting model,
w—L—1
i=0 -
The forecasting model is then trained using the deterministic loss LFp with a
£y norm, described as:

producing latent forecasts Xp 1.0 = (Zj1041 = For((Tjg1, - j11)))

w—Il—1
A 1

Lrp = dw=10) ]Z:O 5 4+1+1 = For (@51, 25)) 17, - 4)
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4.4 Probabilistic Forecasting

In high-dimensional settings, probabilistic modeling of forecasts conditioned on
observed ones, i.e., p(yr41, - . -, Yr++|Y1.7), POSes a significant challenge. Previous
research has predominantly focused on either modeling each individual time
series independently or considering the joint distribution as Gaussian. However,
the former approach neglects inter-series interactions, while the latter suffers
from a quadratic increase in the number of learned parameters with the data
dimension.

Once again, in the context of probabilistic modeling, we advocate for the non-
linear encoding of input data into a significantly lower-dimensional space [22].
Assuming that the encoder function &, is sufficiently trained to be considered
a one-to-one function, we can then associate the probability of the latent series
X with that of the original series Y (p(x) = p(y)). Subsequently, we could incor-
porate a fairly simple probabilistic structure, such as a Gaussian distribution, in
the latent space and still be able to model complex distributions of multivariate
data through the decoder mapping:

p(xip1|r1s) = N(@ip1; i, 1), i € [|L,w]]. (5)

Here, we identify the conditional distribution as a multivariate Gaussian, with
the identity matrix as the covariance matrix to guide the embeddings in captur-
ing different orthogonal patterns in the data. The mean u; is computed using
the function Fp, as u; = Fo,(r1,...,2;). We employ the reparameterization
trick [14] to generate latent forecasts needed for backpropagation through input
data. In other words, we estimate the value of x;y1 using Z;41 = p; + le =
For(x1,.smi) + 1le = Ro Fy,(x1, ..., x;), where e ~ N(0,1), and R(.) describes
the reparameterization trick function, such that R(z) = x + le. Similar to the
deterministic setting, the forecasting loss function is defined as Lr, using a £,
norm as:
1 w—Il—1
Lr, & dw=1) jz_:o 12+ L+1 = Zj4L41llZ, - (6)

4.5 End-to-end training.

After producing elements )A(LH:w, the decoder takes the matrix X = (X1.1;
XL+1:w) € R**? as input and generates the matrix Y = (01,2, - -+ Ju) € RWXN
as Y = Do, (X ). Consequently, the output Y comprises two components: the
first consists of elements g;, with i € [|1, L|], decoded directly from the encoder
output without passing through the middle layer, defined as §; = Dy, 0 Ep, (i),
whereas the forecasting model is involved in decoding the second part §; = Dy, 0
R* 0 Fy, 0 Epe ((Yi—r+41,---, %)), with i € [|L + 1,w[], and R*(.) £ Identity(.)
in the point estimate problem or R*(.) £ R(.) otherwise.

Minimizing the error £4¢ £ ﬁ”f’ — Y|, could then be thought of as en-
abling latent representations to have predictive abilities while also being capable
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of faithfully reconstructing data. The objective function for a batch Y is defined
as:
Ly (0s,0F,0p) = AapLas + ArLr + A1 LT, (7)

where Aag, Ar, Agr € Rt are positive constants, and £r = Lr, for the deter-
ministic case or Lr £ £ 5 otherwise.

Once the model is trained, several steps ahead forecasting is performed us-
ing rolling windows. Given the past input data (yr—r1,...,yr), the trained
model constructs the latent prediction Zp4; = R* o fgf((xT,LH, .. 7JCT)).
Subsequently, the predicted point §741 is decoded from Zpyi. This operation
can be repeated 7 times to predict 7 future points of the input time series
Y, where we produce the latent prediction Zr42 by providing the subsequence
(xr—L,...,&741) as input to the forecasting model.

5 Experiments

Deterministic Forecasting Experimental Setup: For point estimation, we
conduct a comparative analysis with state-of-the-art multivariate and univariate
forecasting methods, following the approach in [27] and [32]. Our evaluation em-
ploys three popular datasets: electricity |30]: hourly consumption of 370 houses,
traffic [7): hourly traffic on 963 car lanes in San Francisco, and wiki [18]: daily
web traffic of about 115k Wikipedia articles. We conduct rolling forecasting with
24 time points per window, reserving the last 7 windows for testing in both the
traffic and electricity datasets, and 14 points per window with the last 4 windows
for testing in the wiki dataset. Evaluation metrics include mean absolute percent
error (MAPE), symmetric MAPE (SMAPE), and weighted average percentage
error (WAPE) as in [27].

The model architecture and optimization setup align with TLAE, featuring a
bottleneck feed-forward network with RELU nonlinearity functions on all layers
except the last ones of both the encoder and decoder modules. The dimensions
of the layers vary according to the dataset. In the latent space, a 4-layer LSTM
network is employed, with 32 hidden units for traffic and wiki datasets, and 64
for electricity, following the recommendations of [22]. The ¢; loss is used in the
Lag loss, and the /5 loss is used in the Lr, loss. Regularization parameters
ME, Ar, Apr are all set to 1, and Ay¢ is set to 0.005 as suggested in [34].
Additional setup and training details are provided in Tables [Ta] and [Ib] as well
as sub-section [5.3

Probabilistic Forecasting Experimental Setup: for the analysis of prob-
abilistic estimation, we introduce two additional datasets: solar: hourly photo-
voltaic production data from 137 stations used in |15], and taxi: New York taxi
rides taken every 30 minutes from 1214 locations [28]. Our evaluation compares
the performance of our model against state-of-the-art probabilistic multivari-
ate methods introduced in [22,[25,[31], as well as univariate forecasting meth-
ods [161[23L26], all utilizing the same data setup. It’s essential to note that the
data processing and splits utilized in this analysis differ from those of point
forecasting. We maintain an identical network architecture as in our previous
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Table 1: Statistics and network architectures of datasets.

(a) Statistics of datasets used in both de- (b) Network architecture per dataset.
terministic and probabilistic forecasting Encoder dims = number neu-
experiments. rons/layer of the encoder.
Dataset, Time Dimension Predicted Rolling Frequency Dataset Encoder dims LSTM LSTM sequence
Steps N Steps Window layers  hidden length L
T T k dim
Traffic 10392 963 24 7 hourly Traffic [256, 128, 64] 4 32 32
Electricity 25920 370 24 7 hourly Electricity [256, 128, 64] 4 64 32
(large) (large)
Electricity 5833 370 24 7 hourly Electricity [128, 64] 4 64 32
(small) (small)
Wiki 635 115084 14 4 daily Wiki [256, 128, 64] 4 32 16
(large) (large)
Wiki 792 2000 30 5 daily Wiki [128, 64] 1 32 64
(small) (small)
Solar 7009 137 24 7 hourly Solar [256, 128, 64] 4 32 32
Taxi 1488 1214 24 56 30-min Taxi [256, 128, 64] 4 32 112

experimental setup and use the same values for regularization parameters, as
well as ¢y loss for Lz,,.

To assess the quality of our probabilistic estimates, we employ two distinct
error metrics: the first metric is the Continuous Ranked Probability Score across
Summed time series (CRPS-Sum) [9,/19[22}/25], which measures the overall fit of
the joint distribution pattern. The second metric is the mean square error (MSE),
which assesses the fit of the joint distribution central tendency. Together, these
two metrics provide a comprehensive evaluation of the precision of our predictive
distribution fit.

5.1 Experimental Results

Table [2a] presents a comparison of various deterministic prediction approaches.
Results for all models, except the FR3LS model, were originally reported in [22]
under the same experimental setup. Here we do not compare our model with
classic methods such as VAR, ARIMA etc., as it has already been shown that
they obtain performance inferior to TLAE, TRMF and DeepAR methods ( |22,
26432]). Global models leverage global features for multivariate forecasting, while
local models employ univariate models to predict individual series separately.
In Table we display the error scores comparison for probabilistic algo-
rithms. Most results are drawn from Table 2 of [22], with our FR3LS results pro-
vided at the end. Conventional statistical multivariate techniques, such as VAR,
and GARCH ( |2l/17]), and Vec-LSTM methods, which use a single global LSTM
to process and predict all series simultaneously, are included. Additionally, GP
methods encompass DNN Gaussian process techniques proposed in [25], with
GP-Copula being the primary approach. Further details can be found in [25].
As seen in Table[2a] our method outperforms other global factorization meth-
ods in 8 out of 9 dataset-metric combinations. Compared to TLAE, our method
achieves an average gain of up to 15% in traffic performance and 13.4% in elec-
tricity. Furthermore, compared to other methods, we observe a gain of up to
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50% in performance in both the traffic and electricity datasets. For probabilistic
forecasting, as shown in Table 2D] our proposed model demonstrates superior
performance in the majority of dataset-metric combinations (7 out of 10), with
significant gains observed in the Solar, Traffic, and Taxi datasets.

The improvement of the results seen in Tables and over our direct
competitor model, TLAE, in both deterministic and probabilistic settings, can
be attributed to the enhancement of the latent representations learned by the
model. Indeed, enabling the model to be robust against distortions applied to the
embeddings enhances its stability in capturing the underlying latent series with
predictive power for the time series at hand. Moreover, constraining the model to
have embeddings with decorrelated vector components, that is, minimizing the
ij terms in , effectively reduces the redundancy of the latent representations.
This, in turn, aids the model in focusing on learning latent series that are well-
distributed in the latent space.

It is important to note that we utilized LSTM as both the forecasting model
and a standard feed-forward autoencoder architecture. We did not employ more
advanced models such as TCNs and N-Beats, which could potentially lead to
further enhancements. Moreover, in the deterministic prediction case, our model
did not use additional local modeling or exogenous features, in contrast to local
and combined methods, yet achieved superior performance on 2 out of 3 datasets
across all metrics. Finally, we emphasize that our model does not require any
further retraining during the testing phase.

5.2 Visualization of latent & original series forecasts.

Figure illustrates the dynamics of trained latent variables and their predic-
tions on the traffic dataset. The blue curve represents the original latent series,
while the orange curve depicts their mean predictions. The light-shaded gray
area signifies the 90% prediction interval. For each of the 168 predicted times-
tamps (7 x 24), 1000 prediction samples were generated. The figure demonstrates
that latent variables possess the ability to capture global trends in individual
time series. Despite having unique local properties, these latent variables exhibit
similar global repeating patterns.

Additionally, Figure showcases a selection of real-time series variables
from the traffic dataset alongside their corresponding predictions. The original
time series, Y, is depicted in blue, while the predicted time series, Y, is shown in
orange. The light-shaded gray area represents the 90% prediction interval. The
predictive power of the latent representations in FR3LS enables the model to ac-
curately capture the overall pattern of the original time series. Furthermore, the
model performs well in predicting the local variability associated with individual
time series.

5.3 Further Experimental Setup Details

To train the model, we use the Adam optimizer [13] with a learning rate of
0.0001, commonly recommended for stability. Our observations indicate that
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Table 2: Comparison of different forecasting algorithms.

(a) Deterministic algorithms comparison in terms of WAPE/MAPE/SMAPE metrics.
Best global factorisation results are indicated in bold, best overall performance with *.

Model

Algorithm

Datasets

Traffic

Electricity

Wiki

Global factorisation

FRLS (proposed method)
TLAE [22]
DeepGLO-TCN-MF [27]
TRMF [32]
SVD+TCN

0.102°/0.116°/0.090"

0.117/0.137/0.108
0.226,/0.284/0.247
0.159,/0.226/0.181
0.329/0.687/0.340

0.071*/0.127%/0.105"

0.080/0.152/0.120
0.106/0.525/0.188
0.104/0.280/0.151
0.219/0.437/0.238

0.290/0.463 /0.380

0.334/0.447/0.434
0.433/1.59/0.686

0.309/0.847/0.451
0.639/2.000/0.893

Local & combined

DeepGLO-combined [27]
LSTM [11]
DeepAR |26]
TCN (no Leveldlnit) [1]
TCN (LeveldInit) [1]
Prophet [29]

0.148,/0.168/0.142
0.270/0.357/0.263
0.140/0.201/0.114
0.204/0.284/0.236
0.157/0.201/0.156
0.303/0.559/0.403

0.082/0.341/0.121
0.109/0.264/0.154
0.086/0.259/0.141
0.147/0.476/0.156
0.092/0.237/0.126
0.197/0.393/0.221

0.237/0.441/0.395
0.789/0.686/0.493
0.429/2.980/0.424
0.511,/0.884/0.509

0.212*/0.316" /0.296"

(b) Probabilistic comparison in terms of CRPS-Sum/MSE metrics. Lower scores indi-
cate better results. A -’ denotes a method failed (e.g., due to the lack of scalability).

Algorithm Solar Electricity-small Traffic Taxi ‘Wiki-small
VAR 0.524 / 7.0e3 | 0.031 / L.2e7 | 0.144 / 5.1e3 | 0292 /- 3.400 / -
GARCH 0.869 / 3.5e3 | 0.278 / 1.2e6 | 0.368 / 3.3e-3 -/ - -/-
Vec-LSTM-ind 0.470 / 9.9¢2 | 0.731 / 2.6e7 | 0.110 / 6.5e-4 | 0.429 / 5.2el | 0.801 / 5.2e7
Vec-LSTM-ind-scaling 0.391 / 9.3e2 | 0.025 / 2.1e5 | 0.087 / 6.3e-4 | 0.506 / 7.3el |0.113 / 7.2e7
Vee-LSTM-fullrank 0.956 / 3.8¢3 | 0.999 / 2.7¢7 2/ -/ -/
Vec-LSTM-fullrank-scaling | 0.920 /3.8e3 | 0.747 / 3.2e7 -/- -/- -/-
Vec-LSTM-lowrank-Copula| 0.319 / 2.9¢3 | 0.064 / 5.5¢6 | 0.103 / 1.5e-3 |0.4326 / 5.1e1|0.241 / 3.8e7
LSTM-GP |25] 0.828 / 3.7e3 | 0.947 / 2.7e7 | 2.198 / 5.1e-1 | 0.425 / 5.9¢el |0.933 / 5.4e7
LSTM-GP-scaling [25 0.368 / 1.1e3 | 0.022 / 1.8¢5 | 0.079 / 5.2e-4 | 0.183 / 2.7el | 1.483 / 5.5¢7
LSTM-GP-Copula |25 0.337 / 9.8¢2 | 0.024 / 2.4e5 | 0.078 / 6.9e-4 | 0.208 / 3.1el |0.086 / 4.0e7
VRNN |6] 0.133 / 7.3e2 | 0.051 / 2.7¢5 | 0.181 / 8.7e-4 | 0.139 / 3.0el |0.396 / 4.5e7
TLAE [22] 0.124 / 6.8¢2 | 0.040 / 2.0¢5 | 0.069 / 4.4e-4 | 0.130 / 2.6l |0.241 / 3.8e7
FRLS (proposed method)|0.091 / 3.5e2| 0.038 / 1.4e5 |0.056 / 3.7e-4/0.123 / 2.5e1|0.244 / 3.9¢7

higher learning rates often lead to unstable performance. To prevent explod-
ing gradients and stabilize model training, we employ gradient clipping. This
technique limits the magnitude of gradients during backpropagation [21]. Fur-
thermore, we implement an adaptive learning rate scheduling strategy to control
the training optimization process’s convergence while enhancing stability [3].

We adhere to the recommendation of TLAE [22] for setting the subsequence
lengths L and w as w = 2 x L. Additionally, when selecting input data for
training, a potential approach is to employ sliding windows that overlap entirely,
except for one time point, between two subsequences. For instance, we can use
two batches, Yi.iyq and Yiyi.qwi1, at times ¢ and ¢ + 1, respectively, where
w represents the input subsequence length. However, to expedite the training
process, we choose the nonoverlapping regions as follows: 12, 24, 12, 12,12, 1, and
12 for the traffic, electricity (large), electricity (small), solar, taxi, wiki (large),
and wiki (small) datasets, respectively. In other words, smaller nonoverlapping
window sizes were used for smaller datasets.
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(b) Original series forecasting.

Fig. 2: Latent and original series forecasting visualization.

The source code, along with reproducibility instructions for the model and
experiments, is publicly available at |github.com/Abdallah-Aaraba/FR3LS.

6 Conclusion

This paper introduces an efficient approach for high-dimensional multivariate
time series forecasting, advancing the current state-of-the-art in global factor-
ization methods. The method achieves this by combining a flexible nonlinear au-
toencoder mapping, regularized through a non-contrastive self-supervised learn-
ing approach, along with a forecasting model capturing latent temporal dy-
namics. Furthermore, the proposed approach enables end-to-end training and
demonstrates its capability to generate complex predictive distributions by mod-
eling the distribution in the latent space through a nonlinear decoder. Our ex-
periments showcase the superior performance of this method when compared
to other state-of-the-art techniques across various commonly used time series
datasets. Future research directions may involve exploring alternative temporal
models and considering a Transformer-based approach to mitigate the ac-
cumulation of forecast errors in sequential predictions and reduce training time.
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