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Abstract. Correlations between variables in complex ecosystems such
as weather and financial markets lead to a great amount of dynamic
and co-evolving time series data, posing a significant challenge to the
current forecast methods. Discovering dynamic patterns (aka regimes) is
crucial to an accurate forecast, especially for the interpretability of the
outcome. In this paper, we develop a kernel-based method to learn effec-
tive representations for capturing dynamically changing regimes. Each
such representation accounts for the non-linear interactions among mul-
tiple time series, thereby facilitating more effective regime discovery. On
the basis of regime information, we build a regression model to forecast
all the variables simultaneously for the next multiple time points. The
results on six real-life datasets demonstrate that our method can yield
the most accurate forecast (with the lowest root mean square error) in
comparison with seven predictive models.
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1 Introduction

Time-series forecasting is an important topic that continuously attracts a great
deal of interest in a myriad of areas such as finance, medicine, meteorology,
ecology, sociology, and many industrial sectors. In real applications, time series
often comprise numerous short segments, each recurring within the series. These
segments generally correspond to particular regimes/patterns in dynamically
changing environments – e.g., on the volatile financial market [13,6], stock prices
might decline during wartime and subsequently rise with the onset of peace talks.
Discovering and leveraging these underlying regimes has become an essential
research topic for generating accurate and interpretable time-series forecasts.

To capture the dynamic behaviors of time series, several machine learn-
ing methods have been developed to explore the regimes for time series fore-
casting, e.g., RSVAR [8] for health management, WCPD-RS [4] in financial,
and ObritMap [11] in IoT/sensor streams analysis. These models suggest that
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the presence of structural discontinuities in time series leads to a regime shift,
wherein each regime represents distinct behaviors that reveal the underlying dy-
namics throughout time. In general, these models first analyze the overall regime
shifts present in the time series data and subsequently employ the derived models
to forecast future regimes. However, certain characteristics of time series can be
hard to capture when time series exhibit nonlinearity, mixing, or noise. Further-
more, the requirement to predefine the number of regimes in many models, such
as the Markov-based switching model [4], limits their flexibility in dynamically
inferring and estimating regimes from data.

Another significant challenge arises from the complexity inherent in identi-
fying regimes within multiple time series forecasting tasks [14]. This difficulty
primarily stems from the interdependence and co-evolution of the time series –
e.g., to forecast the traffic for a particular road, it is necessary to consider the
impact of traffic on adjacent roads; similarly, the fluctuating user engagement
with music streaming services—evidenced by the decline in Pandora’s click rates
and the simultaneous surge in Spotify’s from 2012 to 2022—suggests competitive
dynamics, with Spotify seemingly attracting Pandora’s user base. Exploring the
interrelationships between series at different time intervals is crucial for regime
identification and prediction.

To address these challenges, we propose a novel approach for multiple time se-
ries forecasting, emphasizing modeling of their evolving interactions and regime
identification. Our method redefines regime identification from the perspective
of self representation learning and transforms the challenge into a subspace clus-
tering problem. This transformation allows for a more nuanced and granular
analysis of multiple time series data, leading to a more precise and interpretable
forecasting model. Our method has the following desirable properties:

(1) Adaptive: Automatically identify and handle regimes (patterns) exhibited
by multiple time series, without prior knowledge about regimes.

(2) Interpretability: Convert heavy sets of time series into a lighter and mean-
ingful structure through kernel representation, depicting the continuous regime
shift mechanism over multiple time series in nonlinear space.

(3) Effective: Operate on multiple time series, explore the nonlinear interac-
tions, and forecast the future values within an ecosystem consisting of mul-
tiple time series.

2 Related work
Traditional time series models, such as general state-space models [3], including
ARIMA and exponential smoothing, excel at modeling the complex dynamics of
individual time series with sufficiently long histories. Although these methods are
widely used in time series forecasting due to their simplicity and interpretability,
they are local in the sense that one model is learned for each time series. Conse-
quently, they cannot effectively extract information across multiple time series.
Hochstein et al. [8] developed a multivariate smooth transition autoregression
model to show how different time series are linearly dependent on each other.
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Fig. 1. Framework of our method. Given multiple co-evolving time series com-
posed of various regimes in fixed-length windows, our method learns the kernel
representation of these regimes for forecasting the next regimes.

This model uses a vector autoregressive model for each regime. It is worth noting
that this type of method attempts to capture the regime shift mechanism through
a single transfer matrix, which unfortunately may be time-dependent for series
that exhibit noncontiguous regimes. Matsubara et al. proposed the RegimeCast
model [10], which learns the various patterns that may exist in a co-evolving
environment at a given window and reports the pattern(s) most likely to be ob-
served at a subsequent time. While the approach can report subsequent patterns,
it does not capture possible dependencies between patterns. In their subsequent
work [11], the authors introduced the deterministic OrbitMap model, designed
to capture time-dependent transitions between exhibited regimes. However, their
model relies on regimes that are labeled in advance. Recent research has demon-
strated significant advancements in time series analysis through the use of deep
neural networks [20,19,15,21]. However, the majority of these studies primarily
focus on modeling and forecasting individual time series, often overlooking the
interactions among multiple time series.

3 Preliminaries

3.1 Key concepts

Time series. A time series is a set of points ordered by a time index as follows:
Si = {(tl, eil)}ml=1, where tl are regular time stamps, m the series length and eil
the series value at the specific time tl. Here, the index i refers to the i-th time
series in a set of N univariate time series S = {Si}Ni=1.

Regime. In this paper, a regime is defined as the profile pattern of a group of
similar subseries observed within a window instance. The term “profile pattern"
refers to a subseries whose vector representation is the centroid of the similar
subseries. Our model permits highly similar, or repetitive, patterns to occur
across subseries at different windows. This repetition enables the identification of
similar regimes at various window instances, facilitating effective regime tracking.
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3.2 Self-representation learning in time series
Time series often exhibit patterns that recur over time. One feasible way to
capture these inherent patterns is through self-representation learning, a concept
derived from subspace clustering [18]. This approach represents each data point
in a series as a linear combination of others, formulated as S = SZ or Si =∑

j SjZij , where Z is the self-representation coefficient matrix. In multiple time
series, high Zij values indicate similar behaviors or regimes between Si and Sj .
The learning objective function is:

min
Z

1

2
||S− SZ||2 +Ω(Z), s.t. Z = ZT ≥ 0,diag(Z) = 0 (1)

where Ω(·) is a regularization term on Z. The ideal representation Z should
group data points with similar patterns, represented as block diagonals in Z,
each block signifying a specific regime. The number of blocks, k, corresponds to
the distinct regimes.

The optimization of this problem can take various forms, influenced by the
choice of Ω(Z). If Ω(Z) = ||Z||1, it results in classical Sparse Subspace Clustering
[7]. Different norms for Z lead to various models like efficient dense subspace
clustering (EDSC), the Frobenius norm in least-squares Regression (LSR) and
the nuclear norm in Low-Rank Representation (LRR).

3.3 Kernel trick for modeling time series
Linear models in Euclidean space often struggle with capturing nonlinear re-
lationships in multiple time series [16]. Kernelization techniques address this
challenge by mapping data into higher, and in some cases, infinite-dimensional
Hilbert spaces using suitable kernel functions [17]. This facilitates the identifica-
tion of linear patterns within these transformed spaces. The process is facilitated
by the “kernel trick", which employs a nonlinear feature mapping, Φ(S): Rd → H,
to project data S into a kernel Hilbert space H. Direct knowledge of the trans-
formation Φ is not required; instead, a kernel Gram matrix K = Φ(S)⊤Φ(S)
is used. The Gaussian kernel, which results in an infinitely dimensional feature
space H, is notably prevalent in this context.

4 Proposed Method
For the sake of clarity, consider the set of time series depicted by Fig 1(a).
We start by introducing our kernel representation learning. This process entails
searching for homogeneous patterns via self-representation learning with a block
diagonal regularizer in kernel space. With a given sliding window of size w, we
can split time series into contiguous subseries of length w, i.e., S =

⋃b
p=1 Sp and

get the number of distinct regimes k by counting the number of distinct profile
patterns across all window-stamps, W1, ...,Wb. Based on the discovered regimes,
we will be able to predict the regime switch and series values.

4.1 Kernel Representation Learning: Modeling regime behavior
In our approach, we circumvent the obstacle of discovering regimes for multi-
ple time series, by solving a self-representation learning problem. This approach
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allows us to effectively cluster subseries, retrieved using a sliding window tech-
nique, into distinct regimes. We begin with the simplest case, where we treat the
whole series as a single window.

Given a set of time series S = (S1, . . . , SN ) ∈ RT×N as described in Eq (1),
its self-representation Z would make inner product SZ come close to S if we
adopted the linear approach. However, the objective (1) falls short in captur-
ing the nonlinear relationships between series. To address this issue, the time
series can be mapped, by “kernel tricks", into a high-dimensional RKHS, where
a linear pattern analysis will be performed. By integrating the kernel mapping,
we present a new kernel representation learning strategy (as shown in Fig 1(b),
with the following objective function:

min
Z

||Φ(S)− Φ(S)Z||2, s.t. Z = ZT ≥ 0,diag(Z) = 0 (2)

Here, the mapping function Φ(·) need not be explicitly identified and is typically
replaced by a kernel K subject to K = Φ(·)⊤Φ(·).

Ideally, we hope to achieve the matrix Z having k block diagonals under
some proper permutations if S contains k regimes. To this end, we introduce a
regularization term to Z and transform Eq (2) to:

min
Z

||Φ(S)− Φ(S)Z||2 + γ

N∑
i=N−k+1

λi(LZ),

s.t. Z = ZT ≥ 0,diag(Z) = 0

(3)

where γ > 0 defines the trade-off between the loss function and regularization
terms, and λi(LZ) contains the eigenvalues of Laplacian matrix LZ corresponding
to Z in decreasing order. Here, the regularization term is equal to 0 if and only
if Z is k-block diagonal (see Theorem 1 for details). Based on the learned high-
quality matrix Z (containing the block diagonal structure), we can easily group
the time series into k regimes using traditional spectral clustering technology [7].

Theorem 1. min
∑N

i=N−k+1 λi(LZ) is equivalent to Z is k-block diagonal.

Proof. Due to the fact that Z = ZT ≥ 0, the corresponding Laplacian matrix
LZ is positive semidefinite, and thus λi(LZ) ≥ 0 for all i. The optimal solution
of min

∑N
i=N−k+1 λi(LZ) is that all elements of λi(LZ) are equal to 0, which

means that the k smallest eigenvalues are 0. Combined with the Laplacian matrix
property, the multiplicity k of the eigenvalue 0 of the corresponding Laplacian
matrix LZ equals the number of connected components (blocks) in Z, and thus
the soundness of Theorem 1 has been proved.

Optimization. The problem (3) can be solved by the ALM with Alternating
Direction Minimization strategy. Normally, the representation matrix Z in Eq.
(3) needs to be nonnegative and symmetric, which are necessary properties for
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defining the block diagonal regularizer. However, these restrictions on Z will
limit its representation capability. For this reason, we propose a modified model
by introducing an intermediate-term C:

min
Z,C

1

2
||Φ(S)− Φ(S)C||2 + β

2
||C− Z||2 + γ

N∑
i=N−k+1

λi(LZ)

s.t. Z = ZT ≥ 0,diag(Z) = 0

(4)

The above two models (Eq (3) and Eq (4)) are equivalent when β > 0 is suf-
ficiently large. As will be seen in optimization, a benefit of the relaxation term
||C − Z||2 is that it makes the objective function separable. More importantly,
the subproblems for updating Z and C are strongly convex, leading to final
solutions that are unique and stable.

Note that
∑N

i=N−k+1 λi(LZ) is a nonconvex term, and by introducing the
property about the sum of eigenvalues, we reformulate it as minW < LZ,W >,
where 0 ⪯ W ⪯ I,Tr(W) = k. So Eq (4) is equivalent to

min
Z,C,W

1

2
||Φ(S)− Φ(S)C||2 + β

2
||C− Z||2 + γ < Diag(Z1)− Z,W >

s.t. Z = ZT ≥ 0,diag(Z) = 0, 0 ⪯ W ⪯ I,Tr(W) = k
(5)

The optimization of Eq (5) involves alternating updates of W, C, and Z. Each
subproblem is convex, allowing for closed-form solutions:

Updating W:

Wi+1 = argmin
W

< Diag(Z1)− Z,W >, s.t. 0 ⪯ W ⪯ I,Tr(W) = k (6)

Updating C:
Ci+1 = (K+ βI)−1(K+ βZ) (7)

Updating Z:

Zi+1 = [(Â+ÂT)]+,where Â = A−Diag(diag(A)),A = C−γ

β
(diag(W)1T−W)

(8)

4.2 Forecasting

We consider all windows to be known except the last one, for which we want to
predict the series values. For b sliding windows {W1, . . . ,Wb}, we obtain b kernel
representations, each corresponding to a window. It is important to know that
the regime Ri discovered from the subseries Sp within the pth(p ∈ [1, b]) window
might not be discovered (i.e., there may be no series exhibiting this regime) in
other subseries (i.e., from other windows). This reveals the variety of regimes in
time series and the demand for a dynamic representation. We predict the kernel
representation for subseries in the next window Wb+1 via a regression model λ,
as follows:

Zb+1 = λ(Z1, ...,Zb) + µb+1, (9)
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Table 1. Data statistics
Data # of series Length of series
Music 20 219
Electricity 370 1,462
Chlorine 166 3,480
Earthquake 139 512
Electrooculography 362 1,250
Rock 50 2,844

where µb+1 is the white Gaussian noise for reducing overfitting. Then, we fore-
cast the value of the time series for the next window Wb+1 based on the self-
representation property:

Sb+1 = Ŝb+1Zb+1 (10)

In this case, we employ the same regression form to estimate Ŝb+1, i.e., Ŝb+1 =
λ(S1, ...,Sb) + µb+1.

5 Experiments

5.1 Data

We collected six real-life datasets from various areas. The Music dataset from
GoogleTrend event stream4 contains 20 time series, each for the Google queries
on a music-player spanning 219 months from 2004 to 2022. The Electricity
dataset comprises 1462 daily electricity load diagrams for 370 clients, extracted
from UCI5. From the UCR’s public repository6, we obtained four time-series
datasets – i.e., Chlorine concentration, Earthquake, Electrooculography sig-
nal, and Rock. Table 1 summarizes the statistics of the datasets.

Fig. 2. The best window size (red line) for the six data sets

4 http: // www. google. com/ trends/
5 https: // archive. ics. uci. edu/ ml/ datasets/
6 https: // www. cs. ucr. edu/ %7Eeamonn/ time_ series_ data_ 2018

http://www.google.com/trends/
https://archive.ics.uci.edu/ml/datasets/
https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018
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5.2 Experimental setup and evaluation

In the kernel representation learning process, we used the Gaussian kernel of the
form K(Si, Sj) = exp(−||Si − Sj ||2/d2max), where dmax is the maximal distance
between series. Parameters γ in Eq (3) is selected over [0.1,0.4,0.8,1,4,10] and
set to be γ = 0.8 for the best performance.

We evaluate the forecasting performance of the proposed model against seven
different models. Among them, four are forecasting models (ARIMA [3], KNNR
[5], INFORMER [21], and a state-of-the-art ensemble model N-BEATS [12]), the
other three are RS models (MSGARCH [1], SD-Markov [2] and OrBitMap [11]).

5.3 Regime identification

In this subsection, we evaluate the capability of our model to identify regimes.
During the learning process, a fixed window slides over all the series, generating
subseries under different windows. We then learn a kernel representation for the
subseries in each window. The quality of our kernel representation depends highly
on how well the time series is split. Due to space limitations, our method for au-
tomatically estimating the optimal size of the sliding windows to obtain suitable
regimes using the Minimum Description Length (MDL) technique can be found
in Supplementary. Fig. 2 exhibits the selected window sizes for the respective
datasets: the length of 31 (resp., 227, 583, 50, 183, 69) window used for the
Music (resp., Electricity, Chlorine, Earthquake, Electrooculography,
Rock) data.

With these window sizes, we can plot the profile pattern to visualize the
regime. In Fig. 3, each row displays the distinct regimes exhibited by co-evolving
series in the six datasets, respectively. We discovered 4 different regimes in the
Music time series, 3 in Electricity, 4 in Chlorine, 3 in Earthquake, 3 in
Electrooculography, and 5 in Rock. For these real cases, we lack the ground
truth for validating the obtained regimes. Fortunately, according to the forecast-
ing which depends on the identified regimes, we will be able to better validate
whether the identified regimes are the right ones.

Fig. 4 illustrates the forecasted outcomes for six arbitrarily selected time
series from the respective datasets, offering a demonstrative insight into the
notable efficacy of our model in forecasting time series. It is important to note
that this illustration is intended to showcase the proficient results achieved via
our regime-based forecasting, a detailed evaluation of the forecasting ability will
be presented in Section 5.4.

5.4 Benchmark comparison

In this subsection, we evaluate the forecasting performance of our proposed
model against seven different models, utilizing the Root Mean Square Error
(RMSE) as an evaluative metric. Table 2 shows the forecasting performance of
the models. We see that our model consistently outperforms the other models,
achieving the lowest forecasting error on all datasets (except for the Earthquake,
because of the weak correlation between the time series). ARIMA has the abil-
ity to capture seasonality patterns within time series; however, when the various
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Fig. 3. Discovered regimes for the six real datasets

Fig. 4. True (black) and forecasted (blue) values for the six time series, each
from a real dataset.



10 K. Xu et al.

Table 2. Models’ forecasting performance, in terms of RMSE, for the nine
datasets

Models Forecasting models
ARIMA KNNR INFORMER N-BEATS

Datasets

Music 6.571 4.021 2.562 0.956
Electricity 2.458 2.683 2.735 1.593
Chlorine 8.361 6.831 3.746 1.692

Earthquake 5.271 3.874 4.326 1.681
Electrooculography 3.561 3.452 4.562 2.487

Rock 6.836 6.043 5.682 2.854

Models RS models
MSGARCH SD-Markov OrbitMap Ours

Datasets

Music 2.641 3.234 1.244 0.663
Electricity 2.425 2.439 1.835 1.644
Chlorine 5.712 3.462 1.753 1.387

Earthquake 4.213 3.573 1.386 1.392
Electrooculography 3.566 3.571 3.251 1.198

Rock 5.924 4.587 4.571 1.699

ARIMA
KN

NR

INFO
RMER

N-BEA
TS

MSG
ARC

H

SD
-M

ark
ov

Orbi
tM

ap Ours

Model

0

2

4

6

8

RM
SE

Fig. 5. Box Plot of RMSE Values for Each Model Across Datasets

seasonalities are noncontiguous, the models face difficulties in capturing com-
plex, nonlinear dynamic interactions between time series. Notably, N-BEATS,
the state-of-the-art deep network model, is generally the second-best performer
owing to its ensemble-based strengths. However, it falls short in capturing com-
plex regime transitions within multiple time series, revealing the limitations of
a model geared solely for single time series forecasting. Meanwhile, OrbitMap,
while also regime-aware, is hindered by its necessity for predefined regimes and
struggles with handling multiple time series. Fig. 5 illustrates the distribution
of RMSE values for each model across all datasets, and it is evident that our
model achieves the most favourable outcomes overall.

5.5 Ablation Study

We conduct ablation experiments to validate the efficacy of our model’s kernel
representation learning. We focus particularly on the regularization and kernel-
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ization techniques employed in (3). Our approach is compared against existing
self-representation learning methods[9] - SSC, LSR, LRR, BDR, EDSC, SSQP,
and SSCE, under varying values of γ. The comparative results are illustrated
in Fig. 6. This comparison clearly demonstrates that our model achieves supe-
rior performance, outperforming the other methods in terms of RMSE across
different datasets for a range of γ values.

6 Conclusion
This paper introduces a new approach for modeling non-linear interactions in an
ecosystem comprising multiple time series. This approach enhances time series
forecasting for subsequent periods, thanks to a notable ability which is its capac-
ity to identify and handle multiple time series dominated by various regimes. This
is accomplished by devising a kernel representation learning method, from which
the time-varying kernel representation matrices and the block-diagonal property
are utilized to determine regime shifts. Furthermore, our model automatically
uncovers various hidden regimes without requiring any prior knowledge about
the series under investigation. Validation with real-world datasets has shown
that our model surpasses existing models in terms of forecast accuracy.
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