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Abstract

We investigate the problem of discovering and forecasting

regular regime switches in a financial ecosystem compris-

ing multiple time series. Such regime switches, indicative of

varying market behaviors across distinct time intervals, are

pivotal for a nuanced understanding of market dynamics,

which in turn allows informed model selection for forecast-

ing and enhanced interpretability of predictive outcomes.

Despite strides in this domain, prevailing methodologies of-

ten falter due to: (1) an inability to e↵ectively model the

temporal behaviors inherent in financial series; and (2) ne-

glecting the interdependencies among series when discover-

ing regimes. In this paper, we propose RHINE, a Regime-

switcHIng model with Nonlinear rEpresentation. RHINE

stands out with its kernel-based representation, adept at

capturing the dynamic shifts in market regimes. This rep-

resentation encapsulates the nonlinear interplay across mul-

tiple financial time series. By leveraging the kernel repre-

sentation, we introduce an eigengap thresholding measure,

designed to automatically discern the optimal number of fi-

nancial market regimes, enhancing the model’s adaptabil-

ity to market fluctuations. Empirical assessments on both

synthetic and real-world stock market datasets underscore

RHINE’s prowess. The findings illuminate that the inher-

ent structures governing financial market behaviors are dy-

namic, and harnessing these dynamics via RHINE leads to

a regime-based model that outperforms both conventional

and state-of-the-art neural network models in predictive ca-

pabilities.

1 Introduction

Financial time series data, by its very nature, is dy-
namic and multifaceted, often exhibiting distinct be-
haviors across di↵erent time intervals. Such behaviors,
or regimes, are not mere statistical anomalies but are
reflective of underlying market dynamics. For instance,
the six distinct segments depicted in Fig 1 showcase
the market’s cyclical nature. These segments are gener-
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Figure 1. A time series involving six di↵erent noncon-
tiguous regimes.
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Figure 2. Time series of stocks. (a) Volatility of stocks
in five di↵erent sectors in S&P 500. (b) Stock closing
prices corresponding to volatility in 2019-2022.

ally characterized by particular patterns in dynamically
changing environments – e.g., the volatility observed in
stock returns during the global financial crisis of 2008-
2009 was not a random fluctuation but a regime char-
acterized by heightened uncertainty. Similarly, market
reactions to geopolitical events, such as wars or peace
talks, can be understood as regime switches. These
regimes, be they transient like recessions or permanent
like structural breaks, hold significant implications for
investment strategies, risk management, and financial
forecasting.

To capture the dynamic market behaviors of time
series, regime-switching (RS) models [21, 8] have been
developed in the financial field. These studies suggest
that structural breaks in time series lead to a regime
switch, where each regime reflects certain behaviors that
explain market dynamics over time. In practice, certain
characteristics of time series can be hard to capture
when time series exhibit nonlinearity, mixing, or noise.
In such cases, selecting the appropriate RS model is
di�cult. Moreover, many of these models, especially the
prevalent Markov-based switching models [27], require
that the number of regimes be set prior to estimating
model coe�cients. This rigidity often hampers their
flexibility in terms of inferring regimes from financial
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data dynamically and estimating the number of regimes.
Another prevalent limitation in RS models is that

the majority of methodologies are tailored to address
regime switches within an individual time series. Dis-
covering regime switches across multiple time series is
notably challenging. This complexity arises from the
inherent interconnectedness within financial markets,
where series do not evolve in isolation but are influ-
enced by mutual external determinants. For instance,
Fig 2(a) shows the volatility of five stocks from the
S&P 500. We analyze the high-volatility region (2019-
2022), which corresponds to the closing prices shown
in Fig 2(b). The close prices on Carnival Corporation
& plc (NASDAQ: CCL – hotels, resorts & cruise lines)
decreased sharply between 2019-12 and 2020-08, while
those on Tesla, Inc. (NASDAQ: TSLA – automobile
manufacturers) increased significantly during the same
period (as shown in Fig 2(b)-red area), which possibly
indicates that people preferred private transport and
refrained from travel and accommodation due to the
covid pandemic. Similarly, the area outlined in blue in
Fig 2(b) may be interpreted as a period of intermittent
suppression of the pandemic. Exploring the linear or
nonlinear interrelationships between series at di↵erent
time intervals is thus crucial for regime identification
and prediction.

In light of these challenges, we introduce an innova-
tive regime-switching model tailored for multiple time
series. This model emphasizes the evolving interplay be-
tween series and leverages kernel representation learn-
ing for regime identification in a nonlinear space. Our
model has the following desirable properties:

(1) Adaptiveness: Automatically identify regimes
and learn the switches, without prior knowledge
about regimes.

(2) Interpretability: Transform heavy sets of time
series into a lighter, meaningful structure via ker-
nel representation, o↵ering a novel perspective on
regime-switching dynamics. To the best of our
knowledge, there is no published work on learning
kernel representation from multiple time series and
accurately discovering regimes.

(3) E↵ective: Operate on multiple time series, ex-
plore the nonlinear interactions and forecast regime
switching within an ecosystem. We also validate
the model’s e�cacy in online learning scenarios.
The experimental results on synthetic and real
stock datasets demonstrate that our model yields
superior performance in forecasting volatility.

2 Related work

The widely used regime-switching model, introduced by
Hamilton [11], characterizes time series behaviors in dif-
ferent regimes. The model governs switches in the co-
e�cients of an autoregression through a discrete-state
Markov process. In [5, 12], the authors incorporated a
switching mechanism into conditional variance models,
investigated autoregressive conditional heteroskedastic-
ity (ARCH) and generalized autoregressive conditional
heteroskedasticity (GARCH) models. Chatigny et al.[6]
proposed a variable-order Markov model to discover and
exploit the underlying regimes in financial time series.
Based on the theoretical framework of expected utility
with uncertain probabilities, Wang et al. [27] proposed
a Markov regime-switching model for asset pricing and
stock market ambiguity measurement. Although the
Markov switching model and its variants have been
widely used in the analysis of economic and financial
time series, they are local in the sense that one model
is learned for each time series. Consequently, they can-
not e↵ectively extract information across multiple time
series.

Recent literature has proposed models for address-
ing the question of interdependence among multiple
time series. Hochstein et al. [13] proposed a multi-
variate smooth transition autoregression model to cap-
ture the linear interdependencies among multiple time
series, in which each regime is modeled using a vec-
tor autoregressive model. It is worth noting that this
type of method attempts to capture the regime shift
mechanism through a single transfer matrix, which is
time-dependent for series that exhibit noncontiguous
regimes. Matsubara et al. [19] proposed the Regime-
Cast model, which learns the various patterns that may
exist in a co-evolving environment at a given window
and reports the pattern(s) most likely to be observed
at a subsequent time. While the approach can fore-
cast subsequent patterns, it does not capture possible
dependencies between patterns. In the updated work
[20], the authors proposed the deterministic OrbitMap
model for capturing the time-dependent transitions be-
tween exhibited regimes. However, in their setting, they
work with priorly labeled regimes (known in advance).
Numerous recent studies focus on time series analysis
based on deep neural networks [23, 30, 17]; however,
the primary focus of these endeavors remains on time
series modeling rather than the intricate task of regime
identification and understanding their persistence in fi-
nancial contexts.

In light of these observations, our work aims to pio-
neer a fresh perspective on regime evaluation in financial
time series. Eschewing traditional methods that rely on
latent variable dynamics, we delve into the inherent pat-
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terns of the time series. Our proposed regime-switching
framework, with its nonlinear mapping, is adept at cap-
turing the ever-changing financial market regimes, of-
fering insights into their intricacies and forecasting po-
tential regime transitions.

3 Preliminaries

Notation. A time series is a set of points ordered
by a time index as follows: Si = {(tl, eil)}

m
l=1, where

tl denotes regular time-stamps, m signifies the series
length, and eil represents the series value at the specific
time tl. The index i refers to the i-th time series within
a collection of N univariate time series S = {Si}

N
i=1.

We denote matrices by boldface capital letters, e.g.,
M. MT, M�1, Tr(M) indicate the transpose, inverse
and trace of matrix M, respectively. diag(M) refers to
a vector with its i-th element being the i-th diagonal
element of M.

3.1 Self-representation learning in financial
data Financial time series often exhibit patterns that
recur over time. The concept of self-representation seeks
to approximate each data point as a linear combina-
tion of other data points [18, 29]. This is expressed
as S = SZ or Si =

P
j SjZij , where Z is the self-

representation coe�cient matrix. In the context of fi-
nancial markets, if two data points Si and Sj exhibit
similar market behaviors or regimes, the coe�cient Zij

should be large. The learning objective function for this
representation is given by:

(3.1) min
Z

1

2
||S� SZ||2, s.t. Z = ZT

� 0, diag(Z) = 0

The constraint ensures the avoidance of trivial identity
solutions. For financial data that is ordered based on
specific market regimes, the ideal linear representation
Z should represent each data point as a combination of
points from the same market behavior or pattern. The
structure of Z in this context can be represented as:

(3.2) Z =

2

6664

Z(1) 0 · · · 0
0 Z(2)

· · · 0
...

...
. . .

...
0 0 · · · Z(k)

3

7775

This representation reveals the underlying structure of
the time series data S, with each block Z(i) in the
diagonal representing a specific market behavior or
regime. The number of blocks k corresponds to the
number of distinct market regimes.

3.2 Kernel trick for financial data modeling
Linear models, while e↵ective in many scenarios, may

not always capture the intricate nonlinear relationships
inherent in financial data. Kernelization techniques
o↵er a solution by mapping data points to higher-
dimensional spaces using kernel functions, allowing for
linear pattern analysis in these spaces. Instead of explic-
itly computing the coordinates in the high-dimensional
feature space, a common practice in kernel methods con-
sists of using the “kernel trick” [14, 28]. Suppose that
the nonlinear feature mapping �(S): R

d
! H maps

the data points S from the input space R to a repro-
ducing kernel Hilbert space (RKHS) H. It is not nec-
essary to know the explicit representation of transfor-
mation �; we only need to obtain a kernel Gram ma-
trix K = �(S)>�(S). The Gaussian kernel, a popular
choice, results in an infinite-dimensional feature space,
making it particularly suitable for modeling complex fi-
nancial data patterns [3].

4 Methodology

Financial markets are complex systems that exhibit in-
tricate patterns over time. In this section, we propose a
novel method tailored to capture the nonlinear interac-
tions and time-evolving regimes commonly observed in
financial time series data.

For the sake of clarity, consider the set of multi-
ple co-evolving time series depicted by Fig 3(a). As
highlighted in the Introduction, financial markets are
characterized by nonlinear correlations and evolving
regimes. The proposed method aims to capture these
intricacies. We start by introducing our kernel repre-
sentation learning approach, which seeks to identify ho-
mogeneous patterns through self-representation learn-
ing with a block diagonal regularizer in kernel/Hilbert
space. With a given sliding window of size w, we seg-
ment time series into contiguous subseries of length w,
i.e., S =

Sb
p=1 Sp. The number of distinct regimes, k,

is determined by counting the unique regimes across all
window-stamps, W1, ...,Wb. By using these identified
regimes, we can then estimate regime switch probabili-
ties. In the financial context, we define a regime as the
profile pattern of a group of similar subseries observed
within a specific time window. This profile pattern is es-
sentially a subseries whose vector representation corre-
sponds to the centroid of similar subseries, representing
a specific market behavior or trend.

4.1 Modeling regime behavior To capture the in-
tricacies of financial market regimes, we propose a kernel
representation learning approach. This approach clus-
ters subseries obtained via a sliding window technique,
allowing us to identify and analyze market behaviors
over di↵erent time intervals. To introduce the math-
ematical foundation of our method, we begin with the
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(b) Kernel representation learning
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    (c) Predict
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�
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Figure 3. Framework of our method. Given multiple co-evolving time series composed of various regimes in
windows, our method learns kernel representations of these regimes to predict the subsequent regimes.

simplest case, where we treat the whole series as a single
window.

Given a set of time series S = (S1, . . . , SN ) 2

R
T⇥N as described in Eq (3.1), its self-representation

Z would make inner product SZ come close to S in
a linear approach. However, due to the nonlinear
nature of financial data, the objective (3.1) may not
e�ciently handle the nonlinear relations between series.
To address this, we employ the “kernel tricks” to
map the time series into a high-dimensional RKHS,
where linear pattern analysis can be conducted. By
integrating this kernel mapping, we present a new kernel
representation learning strategy, as shown in Fig 3(b),
with the following objective function:

min
Z

||�(S)� �(S)Z||2, s.t. Z = ZT
� 0, diag(Z) = 0

(4.3)

where the mapping function �(·) needs not be explicitly
identified and is commonly replaced by a kernel K
subject to K = �(·)>�(·).

Ideally, we hope to achieve the matrix Z having
k block diagonals under some proper permutations if
time series S contains k regimes. To this end, we add a
regularization term to Z and transform Eq (4.3) to:

(4.4)
min
Z

||�(S)� �(S)Z||2 + �
NX

i=N�k+1

�i(LZ),

s.t. Z = ZT
� 0, diag(Z) = 0

where � > 0 defines the trade-o↵ between the loss func-
tion and regularization terms, and �i(LZ) contains the
eigenvalues of Laplacian matrix LZ corresponding to Z
in decreasing order. Here, the regularization term is
equal to 0 if and only if Z is k-block diagonal (see The-
orem 1 for details). Based on the learned high-quality
matrix Z (containing the block diagonal structure), we

can easily group the time series into k regimes using tra-
ditional spectral clustering technology [22]. Note that
Eq (4.4) is a nonconvex optimization problem, for which
we propose a specialized method for solving the non-
convex kernel self-representation optimization (see Ap-
pendix A).

Theorem 4.1. min
PN

i=N�k+1 �i(LZ) is equivalent to
Z is k-block diagonal.

Proof. Due to the fact that Z = ZT
� 0, the corre-

sponding Laplacian matrix LZ is positive semidefinite,
i.e., LZ ⌫ 0, and thus �i(LZ) � 0 for all i. The optimal

solution of min
PN

i=N�k+1 �i(LZ) is that all elements of
�i(LZ) are equal to 0, which means that the k smallest
eigenvalues are 0. Combined with the Laplacian matrix
property, the multiplicity k of the eigenvalue 0 of the
corresponding Laplacian matrix LZ equals the number
of connected components (blocks) in Z, and thus the
soundness of Theorem 1 has been proved.

4.2 Estimating the number of financial regimes
In financial market analysis, accurately identifying the
number of regimes, such as bull and bear markets or
periods of varying volatility, is crucial. These regimes
o↵er insights for informed decision-making, risk man-
agement, and strategic investment. While estimating
the number of regimes in financial time series data
can be challenging, our kernel representation learning
approach o↵ers a promising solution. Leveraging the
block-diagonal structure of the self-representation ma-
trix produced by our method, we can e↵ectively esti-
mate the number of regimes. According to the Lapla-
cian matrix property [26], a strictly block-diagonal ma-
trix Z allows us to determine the number of regimes
k by first calculating the Laplacian matrix of Z (LZ)
and then counting the number of zero eigenvalues of
LZ. Recognizing that real-world financial datasets may
contain noise or anomalies, which is often the case in
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practice, we propose an eigengap thresholding approach
to estimating the number of regimes. This approach es-
timates the number of regimes k̂ as:

(4.5) k̂ = argmin
i

{i|g(�i)  ⌧}N�1
i=1

where 0 < ⌧ < 1 is a parameter and g(·) is an
exponential eigengap operator defined as:

(4.6) g(�i) = e�i+1 � e�i

Here, �i
N
i=1 are the eigenvalues of LZ in increasing

order. The eigengap, or the di↵erence between the
ith and (i + 1)th eigenvalues, plays a crucial role.
According to matrix perturbation theory [24], a larger
eigengap indicates a more stable subspace composed
of the selected k eigenvectors. Thus, the number of
financial regimes can be determined by identifying the
first extreme value of the eigengap1.

Algorithm 1 provides a comprehensive summary of
the steps for nonlinear regime identification in a set of
co-evolving financial time series.

4.3 Forecasting financial regime switches Given
a dataset, S, representing co-evolving financial time
series, our primary objective is to model and forecast
regime behaviors. This is crucial as financial markets
often transition between di↵erent states, such as bullish
and bearish trends. The cornerstone of our forecasting
approach is the estimation of the regime-switching
probability matrix.

For a set of b sliding windows, denoted as
{W1, . . . ,Wb}, we derive b kernel representations, each
corresponding to a window. Suppose that, across all
windows, we’ve identified k distinct financial regimes,
i.e., Rr2[1,k] = {R1, · · · ,Rk}. It is important to know
that the regimes identified within a specific window
might di↵er when analyzed in the context of other win-
dows (see Fig 3(b)). This reveals the variety of regimes
in time series and the demand for a dynamic represen-
tation.

For two consecutive windows, Wp and Wp+1, we
can compute the likelihood of a financial series Si

transitioning from behavior Rr in Wp to Rm in Wp+1,
as follows:

(4.7)

P (Rr ! Rm|Wp ! Wp+1, Si) =

P
? ⇥

r,?
p,p+1⇤

?,m
p,p+1P

?1

P
?2

⇥?1,?2
p,p+1⇤

?1,?2
p,p+1

1We initialize the number of regimes for each window as 3 to
obtain the initial representation Z, and then estimate k.

where ?1, ?2 2 {1, · · · , k} and

(4.8)

⇥r,m
p,p+1 =

⌘ (Rr ! Rm|T r (Si|Wp))

|T r(Si|Wp)|
,

⇤r,m
p,p+1 =

p�1X

l=1

min{⌘(Rr,Wl), ⌘(Rm,Wl+1)}

max{⌘(Rr,Wl), ⌘(Rm,Wl+1)}

Here, ⌘ (Rr ! Rm|T r (Si|Wp)) represents the fre-
quency of the sequence {Rr,Rm} appears in the tra-
jectory T r (Si|Wp), where T r (Si|Wp) is a sequence of
group to describe the various regime behavior displayed
by a series Si over time. ⌘(Rr,Wl) (resp. ⌘(Rm,Wl+1))
is the number of series presenting behavior Rr (resp.
Rm) at window Wl (resp. Wl+1).

Note that the component ⇥r,m
p,p+1 gauges the risk

of observing a sudden shift to behavior Rm given the
prior behavior was Rr. Meanwhile, ⇤r,m

p,p+1 assesses
the overall likelihood of transitioning between the two
regimes within the entire dataset S. Thus, our approach
considers both the immediate risk associated with a
single financial series and the broader context of the
market.

To forecast the series value of Si in Wp+1, given its
behavior in Wp is Rr, and the most probable regime
transition leads to Rm, we can estimate the value
based on historical series and the predicted state. The
forecasted values of Si for the window Wp+ 1 are given
by:

(4.9)

Forecast Si =
pX

l=1

�(Rm|Si,Wl) · ⌧
p�l+1

· {Si|Wl}

where the indicator function �(Rm|Si,Wl) indicates
whether Si belongs to Rm under window Wl, and
{Si|Wl} is the subseries value of Si within window
Wl. The weight value ⌧p�l+1

2 (0, 1) modulates the
contribution of past data to the forecast, emphasizing
the importance of recent financial data.

5 Experiments

5.1 Data To evaluate our model, we used two real-
world stock datasets. The first of these, Stock1, com-
prises 503 stocks collected from the S&P 500, com-
posed of daily OHCLV (open, high, close, low, vol-
ume) data from 2012-01-04 to 2022-06-222. The sec-
ond, Stock2, is composed of intra-day market hours
OHCLV data from 2017-05-16 to 2017-12-06, for 467
stocks from the S&P5003. Our primary objective was

2https://ca.finance.yahoo.com/
3https://www.kaggle.com/datasets
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Algorithm 1 Nonlinear regime identification

Data: A set of multiple time series S = {Si}Ni=1, kernel K,
window size w;

Result: Number of regimes k, set of regimes R, set of
representaions Z = {Zp}bp=1;

1 begin

2 - w  Window size
/* Scanning and Learning: */

3 begin

4 - Z  ? - At each window Wp get the set of
subseries Sp - Obtain Zp, using Eq (4.4);
- Z  Z [ {Zp}

/* Discovering regimes: */
5 - Based on the Z, R  distinct regimes, as mentioned

in section 4.1 and k  |R|

to predict the implied volatility of each stock4. Given
that true volatility remains elusive, we approximated it
using an estimator grounded in realized volatility. We
employed the conventional volatility estimator, defined
as: Vt =

pPn
t=1(rt)

2, where rt = ln(ct/ct�1) and ct
represents the closing price at time t. For Stock1, we
utilized daily data to gauge monthly volatility, while
for Stock2, we used 1-hour intra-day data to determine
daily volatility.

In addition to real data, we crafted a Synthetic
dataset comprising 500 simulated volatility time se-
ries, each generated by a combination of 5 nonlin-
ear functions (see Appendix B for details). The syn-
thetic dataset allows the controllability of the struc-
tures/numbers of regimes and the availability of ground
truth. For data generation, we randomly selected one
of the 5 functions ten times. Each selection yielded 78
sequential values, which were treated as a regime.

5.2 Experimental setup and evaluation For the
kernel representation learning phase, we opted for the
Gaussian kernel, defined as K(Si, Sj) = exp(�||Si �

Sj ||
2/d2max), with dmax as the maximum series distance.

Parameters � in Eq (4.4) and � in Eq (7.10) (found in
Appendix A) were selected from [0.1,0.4,0.8,1,4,10] and
[5,10,20,40,60,100], respectively. The optimal values
were determined to be � = 0.8 and � = 60.

To verify the e↵ectiveness of the proposed RHINE
model, we evaluated the volatility forecasting per-
formance of RHINE against seven di↵erent models.

4We chose to validate our regime-switching model through
forecasting as it provides a quantifiable and objective measure
to assess the model’s capability to understand and adapt to
market changes, rather than through investment decisions or
predicting market trends, which could be influenced by subjective
interpretations and external market conditions and fall outside the
purview of this study.

Synthetic(a) Representation for windows 1, 2 (b) Representation for window 1, generated by different models

(d) True and predicted time series (e.g., series#313)

Window 1 Window 2Z1 Z2 SSC LRR BDR RHINE  SSC LRR BDR RHINE

(c) Discovered regimes

Synthetic

Figure 4. Visualized results on the Synthetic

(c) Examples of regime prediction and regime-based series forecasts for subsequent window 

(a) Discovered regimes

(b) Number of series exhibiting regimes and t-SNE visualization in each window 

R4 R4 R4 R4 R4 R2 R4

R1 R1 R1 R1 R1 R2 R1

R3 R3 R1 R1 R1 R2 R1

MRK

MU

ETSY

Predict

Figure 5. Visualized results on the Stock1

Among them, four are forecasting models (ARIMA [4],
KNNR [7], INFORMER [30], and a state-of-the-art en-
semble model N-BEATS [23]), the other three are RS
models (MSGARCH [1], SD-Markov [2] and OrBitMap
[20]). For the existing methods, we use the codes re-
leased by the authors, and the details of the parameter
settings can be found in Appendix C. We evaluated the
models’ performance via the Root Mean Square Error
(RMSE).

5.3 Regime identification and prediction To
evaluate the capability of RHINE to identify the
regimes, we used the Synthetic and Stock1 datasets.
For real case, we do not have a ground truth for vali-
dating the obtained regimes. Instead, we resort to an
indirect method, i.e., comparing the volatility values
based on the forecast regime with the true volatility
values computed from the original time series. In the
learning phase, a fixed window traverses all series, gen-
erating subseries under varying windows. Subsequently,
we derive a kernel representation for the subseries in
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each window. The quality of our kernel representation
thus depends highly on how well the time series is split.
Our method for automatically estimating the optimal
size of the sliding windows to obtain suitable regimes is
detailed in Appendix D. The method allows obtaining
window sizes of 78 and 17 for Synthetic and Stock1,
respectively (see Fig 10 in Appendix D).

Result on Synthetic With the determined opti-
mal window size, RHINE learns the kernel representa-
tions for all subseries within each window. Fig 4(a)
illustrates the self-representation for 500 subseries of
the synthetic time series for the initial two windows,
N.b.: each element of this 500⇥ 500-dimensional repre-
sentation matrix signifies the correlation between two
subseries within a window. It is evident that sub-
series with higher correlation are more congruent, as
indicated by a brighter point. The varying represen-
tations in the two windows reveal that the correlation
between subseries is time-dependent, – i.e., di↵erent
regimes are concealed in these two windows. Fig 4(b)
depicts the representation (binarized version) for win-
dow 1, as generated by RHINE and three other state-
of-the-art self-representation learning models – i.e., SSC
[10], LRR [16], and BDR [18]. RHINE yields a block
diagonal matrix with dense within-regime scatter and
sparse between-regime separation, e↵ectively revealing
the true underlying regime structure (note that indis-
tinct regimes can lead to bad representations). By
plotting the profile pattern of each block as shown in
Fig 4(c) we can see that the 5 regimes precisely cor-
respond to the 5 functions used to generate the data.
Fig 4(d) presents the forecasts for the last window of
a synthetic time series, demonstrating the proximity of
the forecasts to the actual values. This underscores that
tracking the series interaction over time can help with
time series forecasting for subsequent times.

Result on Stock1 Fig 5(a) showcases the diverse
regimes manifested by co-evolving series in Stock1, im-
plying multiple patterns underlying the monthly volatil-
ity. With the identified regimes, we can discern se-
ries that exhibit each of these regimes at di↵erent
window-stamps, aiding in the comprehension of regime
switching. For illustrative purposes, Fig 5(b) dis-
plays the heatmap of each regime at varying win-
dows and their corresponding 2D visualizations using
t-Distributed Stochastic Neighbor Embedding (t-SNE)
[25]. The heatmap reveals that series indeed harbor
di↵erent regimes at distinct window-stamps, with the
color intensity indicating the prevalence of the regime.
For instance, the gradual lightening of the color in
the third row of the heatmap from left to right indi-
cates the diminishing observation of the corresponding
regime in most series over time. By analyzing the iden-

Original series

RHINE predic%onPredicted values

(1) (2)

(a) Original time series (top) and RHINE prediction results (bottom) 
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Figure 6. Online forecasting results on the Stock2
time series

tified regimes in Fig 5(a) and correlating them with the
heatmap in Fig 5(b), it’s evident that R1 and R4 are
the most prevalent regimes, representing standard mar-
ket volatility and normal trading activities. The exclu-
sive display of R2 and R5 in the 6-th window signifies
substantial market fluctuations, – i.e., the COVID-19
pandemic has severely impacted the financial markets.
In Fig 5(c), we pick three stocks (NASDAQ: MRK, MU,
and ETSY) from Stock1 and present how the regime
switches and how the RHINE predicts the series val-
ues based on the predicted regime at the next window.
It can be seen that the predicted values fit well with
the original time series. Tracking the regime over time
clearly helped in predicting series values at subsequent
times, although the predicted values at some time in-
tervals may deviate from the true time series.

5.4 Online learning on Stock2 To further illus-
trate the predictive capabilities of RHINE, we employed
it for one of the most challenging tasks in time series
analysis – i.e., online forecasting, leveraging the discov-
ered regimes. For this task, we need to forecast upcom-
ing unknown future events, at any given moment, while
discarding redundant information. This approach is in-
herently aligned with online learning paradigms, where
the model continually learns and adapts to new data
points, making it highly pertinent in the dynamic land-
scape of financial markets. We conducted tests on the
Stock2 dataset, segmenting the time series with an 11-
day sliding window. Given the constrained intra-day
data available (7 months) and the strategy employed
for volatility forecasting, extending the sliding window

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited532

D
ow

nl
oa

de
d 

07
/0

6/
24

 to
 1

84
.1

61
.1

20
.1

98
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



(a)

(b)

Figure 7. Results of N-BEATS model. (a) forecasting
on three series of Stock1. (b) online forecasting on four
series of Stock2.

would compromise the available data for assessment. At
any time point t, the observable data encompasses a pe-
riod quadruple the window size preceding time t, e.g.,
at time point t=110, RHINE is trained with S [66 : 109]
and forecasts S [110 : 121].

Fig 6 delineates online forecasting examples on
four stocks (NASDAQ: CSX, ULTA, UNP, and BK)
and some snapshots obtained at several di↵erent time-
stamps. The original data at the top of Fig 6(a) elu-
cidates the daily volatility fluctuations for these four
stocks. The lower part of Fig 6(a) unveils the out-
comes for online forecasting, showcasing how RHINE
anticipates series behavior over time. For stock ULTA,
depicted by the green line, all the compared mod-
els, including RHINE, encounter challenges in predict-
ing the abnormal behavior of the first high volatility
(Fig 6(b-1)) due to the absence of antecedent knowledge.
However, post encountering this anomalous behavior,
RHINE accurately anticipates the timing of the sec-
ond anomalous high-volatility behavior (Fig 6(b-2)) and
the ensuing volatility behavior, attributing to RHINE’s
ability to model regime switching by leveraging the in-
terrelations among multiple time series. Specifically, for
a single-series regime-switching model, it is impossible
to predict the second anomalous behavior accurately if
there is no periodic pattern in it; whereas for RHINE,
since our regime-switching is based on correlations be-
tween series, when other series start to show some
anomalous volatility behavior (albeit small), RHINE is
also able to predict the next volatility of multiple time
series in a holistic way.

5.5 Benchmark comparison Table 1 delineates the
comparative forecasting e�cacy of the various mod-

els. It is evident that RHINE consistently surpasses
its counterparts, registering minimal forecasting error
across all datasets. ARIMA is capable of capturing sea-
sonality within series; however, it encounters challenges
in apprehending complex, nonlinear dynamic interac-
tions amidst financial time series when various season-
alities are disjointed. In most cases, N-BEATS (the
SOTA forecasting model) emerges as the second-best
owing to the advantages of ensemble models. Fig 7
displays the actual forecasting outcomes of N-BEATS.
Compared to our forecasted result, shown in Fig 5(c)
and Fig 6, N-BEATS is unsuitable for capturing com-
plex regime switches within multiple time series; it is
a single time series forecasting model and is not able
to forecast abrupt changes of regimes. OrbitMap yields
acceptable results, as it is also a regime-aware method,
but underperforms RHINE from the need for prede-
fined regimes and di�culty with multiple time series.
Fig 8 compares RHINE with other methods in terms
of computation time in linear-log scales indicating the
great time e�ciency of RHINE only outperformed by
OrbitMap.

Table 1. Models’ forecasting performance, in terms of
RMSE, for the three datasets (Stock2 reports the mean
value of online forecast sliding)

Models
Datasets

Synthetic Stock1 Stock2

Forecasting models

ARIMA 1.761 2.635⇥ 10�2 2.918⇥ 10�2

KNNR 1.954 2.348⇥ 10�2 2.761⇥ 10�2

INFORMER 0.672 1.214⇥ 10�2 1.006⇥ 10�2

N-BEATS 0.319 1.035⇥ 10�2 6.074⇥ 10�3

RS models

MSGARCH 1.264 2.366⇥ 10�2 2.129⇥ 10�2

SD-Markov 0.936 2.146⇥ 10�2 1.669⇥ 10�2

OrbitMap 0.635 1.003⇥ 10�2 7.469⇥ 10�3

RHINE 0.315 8.780⇥ 10�3 3.032⇥ 10�3

Figure 8. Computation time on the three data sets

6 Conclusion

This paper introduces RHINE, a novel regime-switching
model, adept at uncovering and modeling nonlinear in-
teractions within an ecosystem of multiple time series,
particularly in financial markets. RHINE enables us
to model regimes explicitly by extracting inherent pat-
terns through a newly devised kernel representation of
time series. The resulting time-varying kernel represen-
tation matrices are instrumental in identifying regime
switches. Significantly, RHINE autonomously reveals
diverse concealed regimes, eliminating the necessity for
prior knowledge about the investigated series. Our ex-
perimental results demonstrated that RHINE surpasses
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existing models in forecasting accuracy, providing a ro-
bust solution in the financial domain for volatility fore-
casting and real-time analysis of stock market dynamics.
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