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†Laplace Insights, Sherbrooke, Québec, Canada
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Abstract—These days, complex systems yield copious time
series data, necessitating understanding co-generation, often
assessed through pairwise comparisons. However, this method
lacks scalability and temporal dynamics handling. In this paper,
we advocate using a temporal graph to capture contiguous effects
among multiple time series efficiently. Our two-step approach
identifies patterns and temporal influences with low execution
time, showcasing its potential in financial system incident pre-
diction.

Index Terms—Temporal graph, Multiple time series, Cross-
sectional patterns, Series trajectory, Financial data

I. INTRODUCTION

Complex systems generate huge amounts of temporal data.
Examples include climate systems and financial systems that
generate or record data of multiple, often similar or correlated,
variables sequentially to form datasets of multiple time series.

From a data perspective, this represents co-evolving data
based on their time dependency. For example, data consisting
of different weather stations’ recordings of the rainfall volume
are multiple (co-evolving) time series. Identifying dependen-
cies in time series is crucial in areas such as financial markets
[1], climate science [2], etc.

Dependency in time series data refers to the relationship(s)
between variables or factors in time. To identify these depen-
dencies a pairwise comparison such as the Granger causality
test can be performed to measure a series of past values
relationships and determine their subsequent directionality. It
can also merely be done by looking at how series are correlated
[3] in order to capture dependency strength.

To motivate this research, we present a case study involving
a two-time series obtained from the Forex market, illustrated
in Fig. 1. When examining the initial figure (the up), it
is obvious that the series displays a clear downward trend
that sharply declines for EURUSD right before the vertical
black boundary. Conversely, CADEUR maintains a consistent
horizontal fluctuation until the boundary. Starting from the
boundary, CADEUR is on a declining trend while EURUSD
remains relatively stable with some minor fluctuations. The
question we ask is whether one time series has an effect on
another beyond this vertical boundary. The four plots below
with further explanations in the next paragraph, illustrate how
the two-time series can influence each other. This showcases
the complexities and interconnections that can arise in time
series analysis. More on this in the subsequent sections.

Fig. 1: Example of two-time series from the Cross-rate Forex market.
The y − axes displays scaled values, and the x− axes shows time
points on the graph. We analyze the impact of one series on another
(four plots down), focusing on the time after the black line in the
first plot up. Solid lines indicate the ground-truth values, and dashed
lines represent the generated values.

Despite some advances in identifying dependencies,
progress in analyzing multiple time series data is rare. Existing
methods mainly concentrate on autocorrelation, failing to
capture the propagation of dependencies over time. Moreover,
these approaches assume stationarity, limiting their ability to
detect long-duration dependencies. In this paper, we address
these challenges by learning directional dependencies in the
co-evolution behaviour of multiple time series data. We also
simplify our model by assuming that these time series can be
regenerated using a finite number of linear models. We use a
sequence of bipartite graphs to mimic dependencies we have
at contiguous time intervals.

Our major contributions are as follows:
• We suggest an approach that detects latent dependencies

in multiple time series data by approximating them using finite
linear models based on identified patterns.
• We illustrate temporal dependencies using a bipartite



causal graph to model changes across multiple time series
by linking repetitive and new dependencies at varying time
durations in sub-series.

• To validate our approach, we experiment with real fi-
nancial market datasets. We show the perks of the proposed
method by predicting the subsequent dependencies occurring
at time frames ahead.

This paper includes the following sections: related work,
background and definitions, methodology, experiments, and
conclusion.

II. RELATED WORK

This study builds on recent progress in comprehending tem-
poral data dependencies and causality in finance. Traditional
correlation analysis [4] underpins dependency detection, with
financial research exploring the dynamic nature of market
price correlations, especially during crises [5]. Furthermore,
the GARCH framework [6] is used to gauge interdependence
in financial market movements, highlighting potential draw-
backs in relying solely on conditional correlation coefficients.
In [7], copula functions were employed to model temporal
dependencies in daily stock market returns, uncovering height-
ened interconnections among European markets in response to
shared directional shifts, leading to market crashes or booms.

Previous research on identifying dependencies through rep-
resentation, particularly in the context of causality, has been
explored in works by Eichler [8]. The study demonstrates how
to transform temporal data into graphs using Granger causal-
ity, leveraging time order to establish causal relationships
among variables, albeit under certain assumptions, including
non-instantaneous dependencies. Tian et al. [9] introduced
a method for identifying causal dependencies by detecting
structural changes based on local, spontaneous alterations in
the underlying data-generating model.

In this context, an important issue is how dependency
between multiple time series data in finance can be identified,
represented and predicted over time.

III. PRELIMINARIES

We rely on several concepts and definitions for learning the
parameters and identifying representative patterns/behaviours
to represent temporal dependencies and predict causal depen-
dencies. In what follows, we provide descriptions of important
concepts used throughout this work.
Multiple time series: Given a time series Si, we call
multiple-time series a set of time series synchronously gener-
ated. The notation MS = {Si | i = 1, 2, . . . , n} is employed
to denote a set of n series.
Time interval: A time interval refers to a set of limited time
points. For a series of time points (t1, t2, . . . , t100), we use the
notation T1 to mean a time interval of a duration |T1| = 100. In
the same way, any time interval Tj of duration d, d ∈ N∗ (i.e.,
|Tj | = d) will corresponds to the series (tj , tj+1, . . . , tj+d−1).
Sub-time-series data: A sub-time-series data is a section of
temporal data observed within a time interval. The notation

Si
j denotes the portion of the time series Si observed within

the time interval Tj .
In identifying dependencies among multiple time series

data, accounting for dynamic and temporal aspects is essential,
as traditional lagged approaches may prove ineffective [10].
Our approach emphasizes the significance of varying intervals
in establishing time-dependent dependencies, as elaborated
below.
Definition III.1 (Pattern). We call a pattern, the values of
the set of parameters Θi = {ei0, ei1, . . . , eip}, p ∈ N∗ of an
autoregression model enabling the regeneration of a sub-time
series Si. That is, for each time point t ∈ Tj the observed
data y(t) ∈ Si

j can be approximated as,

y(t) ≈
[
ei0, e

i
1, e

i
2, . . . , e

i
p

]︸ ︷︷ ︸
Θi

·
[
1, y(t− 1), . . . , y(t− p)

]T (1)

For the purpose of simplification, in the rest of the paper,
we will use f(Tj |Θi, Si) to denote the above autoregression
function enabling the regeneration of the sub-time-series Si

j

via the pattern Θi.

From the Definition III.1, at each time interval Tj , for each
sub-time-series Si

j , there could be a corresponding pattern
Θi enabling its regeneration. This means that for m time
intervals, there can be a total of m × n distinct patterns.
However, with distinct patterns, no dependency between the
multiple time series can be captured. We assume that if there
are dependencies in the evolving process of multiple time
series, then there should be a much smaller number of common
patterns K ≪ m × n allowing approximately regenerate the
sub-time-series.
Definition III.2 (Co-evolving Time Series). A multiple time
series data set MS = {Si | i = 1, . . . , n} is said to co-evolve
across time intervals T1, . . . , Tm, if there exists a small set
of patterns Θ = {Θκ|κ = 1, . . . ,K}, with K ≪ m× n, such
that, • ∀S

i ∈MS, Si ≈ ⊙m
j=1

(
f(Tj |Θκ, Si)

)
,

• where Θκ = argmin
Θκ∈Θ

∥Si
j − f(Tj |Θκ, Si)∥, ∀Tj .

(2)

with ⊙ the concatenation operator.

The identification of the optimal number patterns is in-depth
given in Section V-B. As suggested in Definition III.2, if we
have multiple time series that co-evolve, then there should
be similar patterns (if not equivalent patterns) enabling the
regeneration of these time series at different time intervals.
This, therefore, yields the following definition.

Definition III.3 (Pattern Similarity). Two patterns Θ1 and
Θ2 extracted from a pair of co-evolving multiple time series
MS are said to be similar (Θ1 ≊ Θ2) if there exist a sub-
time-series Si

j that could be well generated by all of these
patterns.

∃ Tj , Si ∈MS / f(Tj |Θ1, Si) ≈ Si
j ∧ f(Tj |Θ2, Si) ≈ Si

j (3)

IV. PROBLEM STATEMENT

Given a set of multiple time series MS,
(1) We search for a (small) number of behaviours B =

{Bκ, κ = 1, . . . , K} in terms of regenerative autoregression
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Fig. 2: Overview of the proposed framework.

from multiple time series. In other words, we aim to learn K
autoregressive models f(·|Θκ), κ = 1, . . . , K, representing
patterns from which the multiple time series values can be
regenerated.

(2) Based on the identified behaviours B, we want to
learn the transition mechanism that captures the temporal
dependency among the set of series that time-evolve together.

V. METHODOLOGY

A. Overview of the proposed approach

Graphs are commonly used to uncover co-dependencies
in temporal data with nodes representing series and edges
denoting relationships. However, for a large number of co-
evolving series, this approach can lead to either dense or sparse
graphs. A denser graph limits its utility in understanding inter-
series effects, and we aim to avoid pairwise comparisons.

To streamline comparisons and handle multiple time series
efficiently, we create a pattern graph (see Section III), where
each node denotes a potential behaviour exhibited by a series.
Each node is associated with an n-dimensional attribute vari-
able, taking values in 0, 1n. Specifically, the attribute’s value
at position i is 1 (0) if series Si exhibits (does not exhibit)
the represented behaviour. For instance, suppose we have four
series: S1, S2, S4 displaying behaviour B1, while S3 does not.
Instead of using four separate nodes, we employ a single node
to represent behaviour B1 and its corresponding attribute to
indicate which sequences exhibit the behaviour. See Fig. 2(a)
for a visual representation.

To get an overview of the proposed approach, consider
Fig. 2(b) − (d). In Fig. 2(b), we have a temporal multiple
series with 6 examples. Our approach aims to identify 4
main behaviours (B1 − B4) represented by grey, yellow,
green, and blue colours over time. To achieve this, we start
by setting a time interval T1 and extracting sub-co-evolving
sequences (S1

1 −S6
1 ). We then estimate optimal parameters for

linear models to regenerate these sub-series, using a clustering
strategy. Initially, we obtain parameters for three linear models
associated with yellow, grey, and green behaviours.

Next, we move forward using a fixed stride, checking if
the existing models can still regenerate the sub-series. If they
can’t, we identify new linear models for regeneration. In our

example, this process continues until we reach time interval
T2, where we discover a new behaviour tagged with the colour
blue. This process repeats until the latest observable time point
of the co-evolving time series, as shown in Fig. 2(c).

Based on the identified models, we build a bipartite graph
relating the effects series may have on each other at each
contiguous time interval. Fig. 2(d) depicts the series of bi-
partite graphs. From T1 we can note that nodes tagged with
behaviours B2 and B3 are connected to nodes tagged with
behaviours B1, B2 and B4 at time T2. For example, the
relation B1 → B1 is observed because series S2 presents
the same behaviour during the two-time intervals. In the same
way, the relation B2 → B1 is observed because series S1

switches its behaviour from B2 at T1 to B1 at T2. It is good
to recall that, each node has attributes.

In brief, we suggest a two-step method to detect and model
evolving effects in multiple time series. First, we identify
patterns to recreate series variation over various time intervals.
Second, using these patterns, we reconstruct the ensemble of
series variation across different time intervals to analyze their
mutual effects. We use a temporal bipartite graph to depict
these incidents chronologically. Now, let’s delve deeper into
each step of our approach.

B. Step-1: Pattern identification

Pattern identification is a core step of our approach. In
Algorithm 1 we have steps illustrating how we identify the
patterns from a given multiple time series.

Given MS = {Si | i = 1, 2, . . . , n}, at a given first time
interval T1 of duration d, through a linear autoregressive model
f(), we initially identify the set Θ̂ = {Θ̂i | i = 1, . . . , n}
of parameters (patterns) such that f(T1|Θ̂i, Si) ≈ Si

1, i =
1, . . . , n. The set Θ̂ is later clustered into an ensemble of
homogeneous subsets each represented by one pattern Θκ ∈
Θ̂. It is good noting that, patterns all falling within the same
cluster enable the regeneration of the same time series within
a given time interval.

Moving across the series, we repeat the process at each
time interval Tj ahead if and only if there exists some
sub-time series for which none of the discovered patterns
can regenerate their values at that time interval. At the end



ALGORITHM 1: Pattern identification
Data: MS = {Si | i = 1, 2, . . . , n}, f(), T1, τ ; /* temporal data,

an autoregression model, first-time interval of duration d and
moving step. */

Result: Θ = {Θκ, κ = 1, . . . ,K} ; /* Set of patterns. */

begin
Θ̂← ∅, Θ← ∅, MS ← {Si

1 | i = 1, 2, . . . , n};
1- Get new patterns:
begin

for Sµ
1 ∈MS do
Θ̂µ ← argmin

Θµ
∥f(T1|Θµ, Sµ)− Sµ

1 ∥ ; /* fitting. */

Θ̂← Θ̂
⋃
{Θ̂µ};

Θ← Θ
⋃

a partition of the set Θ̂ ; /* The partition could be
done using any clustering algorithm. Each subset is represented
by a single pattern. */

MS ← ∅, Θ̂← ∅;
2- Update set of patterns:
begin

while τ never reached series length do
Tj ← move previous time interval of a step τ and get

next time interval;
for i = 1, . . . , n do

if ∀Θκ ∈ Θ, ∥f(Tj |Θκ, Si)− Si
j∥ >

∥f(T1|Θκ, S ı̂)− Si
1∥ then

MS ←MS
⋃
{Si

j};

if MS ̸= ∅ then
Run step 1- ;

of the series coverage, we obtain a final set of patterns
Θ = {Θκ |κ = 1, . . . , K} from which we can regenerate
the overall set of co-evolving time series.

C. Step-2: Causal dependencies

Based on the set of patterns, we build a temporal
graph SG = {G1, 2, G2, 3, . . .} where each Gj, j+1 =
(B,Ej, j+1, Aj , Aj,j+1) is bipartite, attributed and directed
graph with

Ej, j+1 =

{
(Bµ, Bν) , Bµ, Bν ∈ B | ∃Si ∈MS,

f(Tj |Θµ, Si) ≈ Si
j ∧ f(Tj+1|Θν , Si) ≈ Si

j+1

}
, (4)

the set of oriented edges relating the behaviour transition a
series may adopt in consecutive time intervals andAj =

{
vµj ∈ {0, 1}

n | ∀ν, (Bµ, Bν) ∈ Ej,j+1

}
,

Aj+1 =
{
vνj+1 ∈ {0, 1}n | ∀µ, (Bµ, Bν) ∈ Ej,j+1

}
,

(5)

are the sets of outgoing and incoming node attributes.
In the rest the of paper, when going to mathematical

calculation, sets Aj (resp. Aj+1) and Ej,j+1 should be viewed
as the attribute matrix in {0, 1}K×n and adjacency matrix in
{0, 1}K×K respectively.

VI. PREDICTING TEMPORAL DEPENDENCIES

Knowing how to identify dependencies from temporal data,
we now want to capture the hidden logic explaining the
behavioural changes that time series undergo from one time
interval to another.

A. Learning process

We leverage the temporal bipartite graph to learn link
dynamics, using a graph neural network for encoding and a
reconstructor neural network for decoding. This constitutes a
graph autoencoder, explained further in the following sections.

1) Encoder: To learn the causal dependencies, we exploit
a graph-based neural network for encoding the previous be-
haviour transitions into a latent space. Due to the fact that
snapshots Gj,(j+1) ∈ SG of our temporal graph are distinctly
built, for an order p ∈ N+, we distinctly and respectively
encode p+1 consecutive graphs G(j−p−1),(j−p), . . ., G(j−1),j

into latent data Y(j−p−1),(j−p) ∈ R2K×q , . . ., Y(j−1),j ∈
R2K×q , q << n. Each latent data Y(j−p−1+l),(j−p+l) is here
calculated using a lth (0 ≤ l ≤ p) topology adaptive graph
convolutional neural network (TAGCNl()) as,

Y(j−p−1+l),(j−p+l) = TAGCNl

(
G(j−p−1+l),(j−p+l)

)
. (6)

Above the fact that each snapshot of the temporal graph is
generated using a TAGCN, through a perceptron, we aggregate
the distinct p first encoded graph as

Ŷ(j−1),j = MLP
(
⊙p−1

l=0 Y(j−p−1+l),(j−p+l)

)
. (7)

Using equations (6) and (7) we thus define our encoder as,

Enc
(
G(j−p−1+l),(j−p+l), 0 ≤ l ≤ p |Wenc

)
={

• Y(j−p−1+l),(j−p+l), 0 ≤ l ≤ p

• Ŷ(j−1),j
(8)

where Wenc are the encoder parameters.
2) Decoder: In contrast of the encoder that ingest p + 1

graphs, the decoder takes as input the (p + 1)th embeddings
and attempts to reconstruct the p+1 corresponding graph, that
is the adjacency matrix and the attribute matrices. Formally,
we define our decoder as,

G(j−1),j = Dec
(
Y(j−1),j |Wattr, Wedge

)
(9)

=


Aj ⊙Aj+1 = Softmax

(
MLP

[
Y(j−1),j |Wattr

])
,

Ej,(j+1) = Softmax
(

MLP
[
Y(j−1),j · Y ∗

(j−1),j
|Wedge

])
,

where W r
attr and W r

edge are the decoder neural network
parameters.

3) Learning: Given Wenc the parameters of the encoder,
we train it in such way that the calculated latent data Ŷ(j−1),j
values via Eq.( 7) should be close to the value naturally
generated by TAGCNp+1() the (p + 1)th TAGCN network
as follows,

Lenc = min
Wenc

m∑
j=2

[
∥Ŷ(j−1),j − Y(j−1),j∥ |Wenc

]
. (10)

For the decoder, we calculate the loss in reconstructing the
attribute matrices as well as the adjacency matrix as,

Lattrdec = min
Wattr

m∑
j=2

[
∥Âj ⊙ Âj+1 −Aj ⊙Aj+1∥ |Wattr

]
(11)

Ledgedec = min
Wedge

m∑
j=2

[
∥Êj,(j+1) − Ej,(j+1)∥ |Wedge

]
(12)

Using equations (10), (11) and (12) we then calculate the
whole loss of our autoencoder as,

L = Lenc + Lattrdec + Ledgedec . (13)



B. Prediction

Given the temporal dependencies SG =
{G1,2, . . . ,G(m−1),m} covering time intervals ranging from
T1 to Tm. We want to predict the plausible dependencies we
may observe at the next contiguous time intervals Tm and
Tm+1 (i.e., the graph Ĝm,(m+1)). For this, we will exploit
our trained graph autoencoder. Here, we particularly make
use of the MLP component of the encoder and the whole
decoder component.

Recall that for a settled lag p, the encoder will ingest p+1
consecutive snapshots of the temporal graph and reconstruct
the (p + 1)th graph. Knowing the latest p + 1 snapshots
we generate the corresponding embeddings using Eq. (8). To
predict next embeddings at the contiguous time intervals Tm
and Tm+1, we use the relation Eq. (7) where we pass the novel
list of p embeddings given as, Y(m−p),(m−p+1), . . . , Ŷ(m−1),m.
From the aggregated embeddings, we thus use the decoder
given in Eq. (9) to reconstruct the node attributes as well as the
adjacency matrix. Formally, to predict the next dependencies
Ĝm,(m+1) we only need to estimate the attribute Âm+1 and
the adjacency Êm,(m+1) matrices as follows,

Ĝm,(m+1) =


• Ŷm,(m+1) = MLP

(
⊙{

Y(m−p),(m−p+1) . . . , Ŷ(m−1),m}
)

• Dec(Ŷm,(m+1) |Wattr,Wedge)

(14)

VII. EXPERIMENTS

In this section, we evaluate the proposed approach:
1) For identifying causal dependencies in multiple time series
using a linear regression model. We also present how patterns
are repeatedly exhibited over time across the input multiple
data.
2) For learning the underlying causal dependencies’ mech-
anism explaining the co-evolutionary aspect of the input
multiple data present.
3) For predicting causal dependencies in subsequent remaining
series at times ahead.
We utilize the FINCH clustering algorithm [11] to determine
initial clusters in a scalable manner, eliminating the need
for predefined cluster numbers. For addressing time series
data representation challenges, we turn to Topology Adaptive
Graph Convolutional Networks (TAGCNs) [12], renowned
for their interpretable node representations, scalability, and
performance in time series analysis, particularly in forecasting.
We leverage TAGCN to perform convolutional operations,
enabling us to aggregate local neighbourhood information
effectively.

A. Dataset description

Our model was tested with a diverse range of real-world
financial market data, including stocks, currencies, investment
funds, and major indices from Yahoo Finance. This data
offered unique insights into market behaviours. For stocks,
we focused on 74 out of 78 large-cap stocks in the Global
Industry Classification Standard - Information Technology
sector index as of March 2022, spanning from 2017-01-01 to
2022-01-01. Additionally, we utilized Exchange-Traded Funds
(ETFs) data, representing 15 series of the most liquid and

TABLE I: Summary of Data Used

Financial Instruments Data #Series #Data points
(n) (m)

Large-cap Market S&P 500 74 1,259
Investment Fund ETFs 15 3,893
Stock Exchange World Indices 35 1,318

Currency Forex Cross-rates 25 4,175
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Fig. 3: Example of patterns identified using a linear autoregression
model with lag 2. Figures illustrate how the identified patterns persist
over time.
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Fig. 4: Temporal dependencies identified in each dataset. From top
to down are S&P500, ETF, Indices and Forex respectively. Initial
settings (i.e., |T1| and stride τ ) are identical as in Fig. 3.

traded ETFs, suitable for global macro investment strategies.
This dataset encompassed US and global equities, emerging
markets, US Treasuries, bonds, commodities, real assets, and
the US dollar index. For major indices, we sourced data from
Yahoo Finance, covering a series range from 2009-01-01 to
2014-03-28, including 35 out of 36 series available as of
June 2023. Lastly, we analyzed forex cross-currency rates,
incorporating all major currencies and others, utilizing 26
out of 29 cross-currency series as of June 2023 from Yahoo
Finance, between 2006-01-01 and 2021-12-31. We excluded
3 cross-currency series, 4 large-cap stocks, and 1 world index
due to null values or data unavailability.

Table I summarizes the datasets of multiple series of returns.
Each set exhibits observable temporal dependencies, as shown
in Fig. 1.

B. Causal dependencies

To begin, let’s examine the potential patterns that can arise
from using linear autoregressive models of the form y(t) =
a0 + a1y(t − 1) + a2y(t − 2) (i.e., lag 2). Fig. 3 depicts the
persistence of identified patterns in each of the datasets. Each
data set comprises two components; the left side is the total
number of series generated by the identified model and, the
right side is the lifespan (duration) where these models are



TABLE II: Compared Execution time of models.

Data Granger PCMCI Proposed
Causality (sec) (sec) (sec)

S&P 500 505 3273 21
ETFs 19 137 9

World Indices 228 1288 20
Forex Cross-rates 57 280 14

TABLE III: Performance of the approach in predicting causal
dependencies in our dataset

Proposed approach, train performances
S&P500 ETFs Indices Forex

Accuracy 91.4% 97.1% 80.6% 88.5%
F-1 83.4% 92.3% 61.9% 72.4%
Precsion 90.7% 96.6% 86.17% 89.1%
Recall 89.2% 95.4% 63.3% 78.4%

used to generate the ground-truth series. For these plottings,
we make use of first-time interval T1 values whose duration
are |T1| = 300, 300, 50, 200 for S&P500, ETF, Indices and
Cross-rate Forex respectively. As stride values, we used τ =
50, 200, 20, 200.

As shown in Fig. 3, some patterns persist throughout the
entire time intervals, indicating inter-series influences through
generative models. This observation aligns with the findings
in Fig. 4, detailed in Section V-C, where the causal graph rep-
resents patterns as nodes. Notably, each sub-graph maintains a
constant number of nodes, predetermined by the total pattern
count, yet the scalability of nodes and edges depends on the
initial T1 size. These co-evolving dependencies underscore
the existence of inter-series dependencies, with a significant
impact from the initial settings at T1 and the chosen stride
value. Table II shows the execution time taken to identify
dependencies in our approach, the Granger causality test and
PCMCI model [10]. We maintained the same data settings on
all models.

C. Predicting causal dependencies

In this section, we present how could the temporal graph be
exploitable for predicting subsequent dependencies in multiple
time series having a co-evolving aspect. For this, we first
define the following settings,
(1) For each data, we take all the historical temporal graphs
except the two latest time intervals as knowledge-based in-
formation. The two latest time intervals are assumed to be
unknown information.
(2) From the knowledge-based information, we then train our
graph autoencoder.
(3) Having the neural network trained. We then predict the
subsequent dependencies at the subsequent time intervals.
Training phase: We employ a consistent neural network
architecture across all our datasets, consisting of three graph
neural networks (GNNs) with two hidden layers of TAGCN
type. These hidden layers are configured with 18 and 25
neurons, respectively. We incorporate a custom binary activa-
tion function, which transforms all values below a predefined
threshold of 0.5 to 1 and sets the rest to 0 within the encoder.
Prediction phase: Predicting subsequent dependencies can
also be likened to link prediction. We compare our approach

TABLE IV: Accuracy of models.

Predicting one time interval ahead
Data Proposed RGNN EvGCN TGCN
S&P500 81.1% 65.9% 65.4% 93.1%
ETF 90.8% 68.4% 69.6% 84.5%
Indices 95.8% 66.6% 84.1% 63.8%
Forex 86.7% 78.6% 79.5% 74.4%

to three recent deep-based models for temporal graphs: RGNN
[13], DCGR [14], and TGCN [15], using the same architecture
settings as our proposed approach. Table IV displays accuracy
results, with bold indicating the best values for each dataset.

VIII. CONCLUSION

In summary, our novel two-tier dependency model surpasses
conventional techniques like correlation and autoregression,
enhancing interpretability by uncovering dependencies within
sub-time series through parameter-based pattern exploration.
It consistently outperforms traditional and recent models in
detecting temporal dependencies, as demonstrated in Table II.
Future works will expand the dataset to include more system
data.
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